Overview of Carbohydrate Metabolism:

The importance of regulating blood glucose levels.

Glucose: Obligate fuel for CNS & RBC's

- CNS/Brain
 - Dependent on glucose as primary source of fuel
 - Uses ~120g glucose/day of total 160-200 g/d
- RBC
 - Dependent on glucose
 - Lack mitochondria

Regulation of blood glucose levels Insulin

Anabolic in response to hyperglycemia

- Liver
 - Stimulates glycogen synthesis, glycolysis, and fatty acid synthesis
- Muscle
 - Stimulates glycogen synthesis
- Adipose
 - Stimulates lipoprotein lipase resulting in uptake of fatty acids from chylomicrons and VLDL
 - Stimulates glycolysis for glycerol phosphate synthesis (precurser to triglycerides)

Figure 9-1
Role in insulin in lowering blood glucose

Regulation of blood glucose levels Glucagon

- Catabolic, in response to hypoglycemia
- Liver
 - Activates glycogen degradation, gluconeogenesis
- Adipose
 - Stimulates lipolysis and release of fatty acids

Figure 9-2
Role of glucagon in increasing blood glucose levels

Diabetes Mellitus

A multi-organ catabolic response caused by insulin insufficiency

Muscle

Protein catabolism for gluconeogenesis

Adipose

Lipolysis for fatty acid release

Liver

- Ketogenesis from fatty acid oxidation
- Gluconeogenesis from amino acids and glycerol

Kidney

- Ketonuria and cation excretion
 - Renal ammoniagenesis (NH₄+, cation excreted with KB)

FIGURE 9-3

Metabolic Consequences of Insulin Insufficiency. Both anabolic pathways (gluconeogenesis) and catabolic pathways (protein degradation, triglyceride hydrolysis, fatty acid oxidation, ketogenesis, and ammoniagenesis) are activated in the absence of insulin.

Glucose Toxicity

- Diabetic complications
- Glycosylation of Protein
 - Reaction of glucose to amino groups
 - May be related to pathologic changes in eye, peripheral nerves, kidneys
 - Glycosylated hemoglobin (HbA1c)
- Polyol formation
 - Sorbitol production from aldol reductase
 - Accumulation of sorbitol results in osmotic changes and cataracts in the lens