
Regulation of Gene Expression in Eukaryotes

©1999 Addison Wesley Longman, Inc.

Opportunities for the control of gene expression in the eukaryotic cell

©1999 Addison Wesley Longman, Inc.

Gene Expression

- Spatial not every gene product needed in every cell type
- Temporal Different genes expressed at different times
 - Environmental stimuli
 - Hormones
 - Especially seen in development- formation of tissues and organs

Regulation

- –RNA processing
 - 5' cap
 - Poly A tail
 - Intron removal
- In eukaryotes, more level of regulation than prokaryotes due to complex organelles

Cytoplasmic control

- mRNA stability:
 - Long vs. short lived mRNAs
 - Long- many rounds protein synthesis from one mRNA
 - Short rapidly degraded, needs more transcription to replenish (half-life)
- Rapid mRNA degradation may be desirable
- Half-life problem with making a drug, too

mRNA stability

- Poly A tails can add stability
- Longer tails stabilize message more
- E.g., histone mRNAs no poly A tails; message very short lived

- Not found as often in eukaryotes as in prokaryotes
- Induction can work by:
 - Temperature
 - Light
 - hormones

- Temperature
 - Synthesize heat shock proteins (HSPs)
 - Transcriptional regulation stress of high heat signals HSPs to be transcribed
 - Studied in *Drosophila* but occurs in humans also

- Light
 - RBC (ribulose 1,5 bisphosphate carboxylase)
 - Plants must absorb light energy
 - RBC produced when plants are exposed to light (see Northern blot in figure)- remember what is a Northern blot?)

Hormones

- Secreted, circulate through body, make contact with target cell and regulate transcription
- Called signal molecules
- 2 classes of hormones that activate transcription
 - Steroid hormones
 - Peptide hormones

Steroid hormones

- Small, lipid molecules derived from cholesterol
- Easily pass through cell membranes
- Examples
 - Estrogen
 - Progesterone
 - Testosterone
 - Glucocorticoids

Steroid hormones

- HRE's- hormone response elements mediate hormone induced gene expression
- Number of HRE's dictate strength of response (work cooperatively)

Peptide hormones

- Linear chain of amino acids
- Examples
 - -Insulin
 - -Growth hormone
 - prolactin

Peptide hormones

- Cannot pass through cell membrane easily, so convey signals through membrane bound receptors
- Signal transduction hormone binds receptor on cell surface, signal gets internalized, then cascade of events begin

Molecular control

- Transcription factors accessory proteins for eukaryotic gene expression
- Basal transcription factors
 - Each binds to a sequence near promotor
 - Facilitates alignment of RNA polymerase

Special transcription factors

- Bind to enhancers
- Promotor specific (HRE's for e.g.)
- Properties of enhancers:
 - Can act over several thousand bp
 - Function independent of orientation
 - Function independent of position upstream,
 downstream, etc. (different than promotors- close to gene and only one orientation)

- Yellow gene in *Drosophila*
- Tissue specific enhancers for pigmentation for each body part
- Mosaic patterns- alterations in yellow gene transcription in some body parts but not others
- Also see SV40 enhancer (simian virus 40) –

How do enhancers work?

- Influence activity of proteins that bind promoters
- RNA pol and basal transcription factors
- Physical contact with other proteins?
 - Enhancer and promotor regions brought together by DNA folding

Transcription factors

- 2 chemical domains
 - DNA binding
 - Transcriptional activation
- Can be separate or overlapping
- Physical interaction also quite possible

Transcription factor motifs

- Zinc finger DNA binding
- Helix-turn-helix DNA binding (COOH required)
- Leucine zipper binding
- Helix-loop-helix helical regions allow for dimerization
 - Homo and hetero dimers

Gene expression and chromosomes

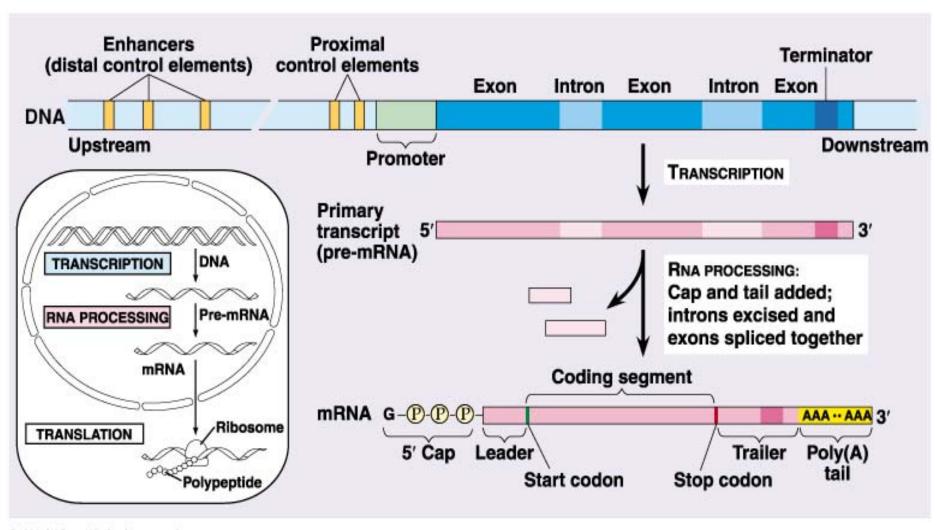
- DNA needs to be accessible to RNA pol for transcription initiation
- Place on chromosome may affect this
- So, gene exp influenced by chromosomal structure
- E.g., lampbrush chromosomes

Is transcribed DNA more "open"?

- Used DNAse I treatments
- Groudine and Weintraub showed transcriptionally active DNA more easily degraded by DNAse I than untranscribed DNA (more "open" to nuclease digestion)
- Have DNAse I hypersensitivity sites near promotors and enhancers

Whole chromosomes: activation and inactivation

- Equalizing activity of X chromosomes in XX versus XY organisms
- Recall mechanisms:
 - Humans, inactivate one X chromosomes in females
 - In *Drosophila*, male X makes double the gene product


X compensation

- Inactivation, hyperactivation, hypoactivation
- What is molecular mechanism of dosage compensation?
 - Specific factor(s) bind to X- regulate its gene
 expression above all other regulatory elements

Dosage Compensation – example of X in humans

- XIC- X inactivation center makes XIST (X inactive specific transcript) - 17kb mRNA with no ORF- so likely does not encode a protein
- RNA is the functional product of the gene
- Found only in nucleus and not associated with active

Opportunities for the control of gene expression in the eukaryotic cell

