Protein Nucleic Acid Interactions

Different types of recognition motifs

- 1. Helix turn helix
- 2. Homeodomains
- 3. Zinc finger
- 4. Leucine zipper
- 5. Winged helix
- 6. Beta ribbon

1. Helix turn helix HTH

- Most common DNA binding motif
- Procaryotes
- Found in hundreds of DNA binding proteins
- Dimerization required for full activity
- Sequences separated by approximately one turn of helix
- Major groove contact to DNA
- DNA sometimes bent

Proteins with HTH motif

Cro

- HTH 2nd and 3rd helix
- 17bp operator

λ

- 2 fold symmetry
- Recognition helices 34
 A apart
- DNA slightly distorted

434

- 4 helix cluster, 2,3 HTH
- 34 A between recognition helices
- Slight distortion

Comparison of 434 and λ

- Gln 33 H bonds to backbone
- Gln 44 H bonds to adenine
- Asn 52 H bonds to backbone

2. Homeodomains

- HTH in eukaryotes
- 60 amino acids
- Helix-loop-helix-turnhelix

DNA Binding

- Helix 2 and 3 similar to HTH
- Recognition helix (3) makes key contacts with major groove
- Flexible arm in helix 1 contacts minor groove

3. Zinc Finger

- α) ββα
- b) Hormone receptor
- c) Gal4
- d) Loop sheet helix

a. $\beta\beta\alpha$

- Part of transcription regulatory proteins
- 30 residue motif coordinating one zinc via 2 cysteines and 2 histidines

DNA binding of Zif268

- Monomer
- Major groove
- Finger bind to 3 base pair subsites

Different Zinc finger binding to DNA

- Zn fingers all have similar structure
- Different contacts to DNA
- Arginine guanine contacts are common

b. Hormone receptor

- Pseudosymmetric homo or heterodimer
- 2 Zn coordinating modules
 - 1 Zn stabilizes DNA recognition helix, other Zn involved in dimer formation
- Zn coordinated by 4 cysteines
- Major groove contacts

c. Gal4

- Found in yeast transcriptional activators
- 65 residue regions binds as dimer (C terminus)
- 2 Zn coordinated by 6 cysteines (N terminus)
- Major groove binder

d. Loop sheet helix

- P53-transcriptional activator involved in tumor suppression
- Zn coordinated by 3 cysteines and a histidine
- Tetramer-5bp recognition helix one after another
- Helix in major groove, loop in minor groove

4. Leucine zipper

- Dimer (homo or hetero)
- Two a helices wound around one another
- Grip DNA like a clothespin

GCN4

- Yeast transcriptional activator
- Coiled coil packing of helices (knobs in hole)
- homodimer

AP-1 Fos Jun

heterodimer

5. Winged helix

- Compact α/β structure
- 2 wings, 3 helices and 3 strands
- Helix 3 is recognition helix

HNF 3

TATA binding protein

- Specifically recognize AT rich DNA sequences
- 8 stranded β sheet binds to DNA
- Hydrophobic side chains intercalate in minor groove
- DNA kinked

DNA-Binding Sites on Proteins

Computational analysis of

- Size (ASA)
- Packing
- Polarity
- Hydrogen Bonding
- Bridging Water Molecules
- Residue Propensities