Pharmacologic Treatment of Parkinsonism & other movement disorders

.

Parkinson's disease

- Parkinson's disease results from the degeneration of dopaminergic neurons in the substantia nigra
- These neurons project to other structures in the basal ganglia
- The basal ganglia includes the striatum, substantia nigra, globus pallidus and subthalmus

Parkinson's Disease

- 'classic triad':
 - Resting tremor
 - Muscle rigidity
 - Bradykinesia.

Aetiology

- Remain largely unknown
- Heredity have a limited role
- Defective gene responsible for a rare condition called autosomal recessive juvenile parkinsonism (teens and 20s)
- Oxidative stress theory (environmental origin)

Oxidative stress and Parkinson's Disease

- Dopamine metabolism results in reactive oxygen species (oxidative deamination of dopamine by MAO -> H2O2).
- Glutathione (primary CNS antioxidant) levels are depressed in Parkinson's disease.
 - Renders neurons more susceptible to ROS toxicity.
 - Observed in workers exposed to insecticides/pesticides.

MPTP and Dopaminergic Neurons

- MPTP induces oxidative damage to dopaminergic neurons.
 - Effect identified in 1976 due to incorrect synthesis of MPPP, an analogue of pethidine (Demerol – opioid analgesic).
 - Symptoms of Parkinson's disease observed within 3 days.
- Effect on dopaminergic neurons is indirect.
 - MPTP itself is not a neurotoxin.
 - Enzymatically converted (via MAO-B) in the CNS to MPP+, which selectively targets dopaminergic neurons in the substantia nigra.
 - MPP+ high-affinity substrate for dopamine reuptake transporters localized to the pre-synaptic membrane of neurons in the substantia nigra.

Key: SNPC—Substantia nigra pars compacta; SNPR—Substantia nigra pars reticulata; GPL—Globus pallidus lateralis; GPM—Globus pallidus medialis; STN—Subthalamic nucleus; PD—Parkinson's disease, HC—Huntington's chorea; GLU—Glutamate; DA—Dopamine; ACh—Acetylcholine. For clarity and convenience GPL and GPM have been drawn separately.

Fig 40.1 The Functional Circuitry Between the Cortex, Basal Ganglia and Thalamus with Neurotransmitter Role in Motor Neurons.

Pathogenesis

- Dopaminergic neuron degeneration: decreased activity in the direct pathway and increased activity in the indirect pathway
- As a result thalamic input to the motor area of the cortex is reducedPatient exhibits rigidity and bradykinesia
- α-synuclein abnormally deposited in the CNS in Parkinson's Disease, leading to the formation of Lewy bodies (the pathological hallmark of PD).

Normal

Parkinsonism

Huntington's disease

Parkinson's disease

(bradykinesia, akinesia, rigidity, tremor, postural disturbances)

Huntington's disease (hyperkinesia)

Pharmacological Treatment of Parkinson's Disease

Goals:

- Primary = restore dopamine receptor function.
- Secondary = inhibition of muscarinic cholinergic receptors.

Drugs used :

- Levodopa
- Dopamine Receptor Agonists
- Monoamine Oxidase Inhibitors (MAOIs).
- Catechol-O-Methyltransferase (COMT) inhibitors.
- Muscarinic Cholinergic Receptor Antagonists.
- Amantidine.

Pharmacological Treatment of Parkinson's Disease

From: Youdim et al. 2006. Nature Rev Neurosci. 7: 295-309

1. Levodopa

- Prodrug immediate metabolic precursor of dopamine.
 - Levodopa can cross the blood-brain barrier while dopamine cannot.
 - CNS enzymatically converted to dopamine by Laromatic amino acid decarboxylase.
- 1-3% of Levodopa actually enters the brain.
 - Primarily due to extracerebral metabolism.
 - Extracerebral metabolism can be reduced by administering a non-BBB permeating peripheral Laromatic amino acid decarboxylase inhibitor.

- 1. Levodopa.... Mechanism of Action:
- Restoration of synaptic concentrations of dopamine.
 - Activation of post-synaptic D2 receptors = inhibit adenylyl cyclase = promote voluntary movement via indirect pathway.
 - Additional benefit obtained via activation of post-synaptic D1 receptors = stimulate adenylyl cyclase = facilitate voluntary movement via direct pathway.

Therapeutic Use

- Best results obtained in first few years of treatment.
- 80% of patients show marked initial improvement (primarily in terms of resolution of muscle rigidity and bradykinesia).
- 20% show virtually normal motor function.
- Over time, levodopa therapy becomes less effective
 - Progressive loss of dopaminergic neurons.
 - Downregulation of D1/D2 receptors on postsynaptic terminals.
 - Some patients require reduced doses of levodopa to prevent side effects.

Carbidopa

- Is a structural analogue of L-dopa
- Inhibits the conversion of L-dopa to dopamine in peripheral tissue
- Carbidopa is highly ionized at physiological pH and does not cross the blood-brain barrier, so it does not inhibit the formation of dopamine in CNS
- It reduces GI and cardiovascular side effects of L-dopa and enables about 75% reduction in dosage of L-dopa

Levodopa-carbidopa

- L-dopa-carbidopa sustained release combination designed to reduce "wearing off" effect or end 0f dose akinesia
- Sinemet[®], Co-carbidopa[®] =
- carbidopa+ levodopa 1:4,1:10
- 25:100mg; 25:250 mg

Levodopa alone

Levodopa with carbidopa

1. Levodopa – Adverse Drug Effects.

- Acute side effects related to increased peripheral concentrations of dopamine.
 - Nausea
 - Anorexia treated with peripherally-acting dopamine antagonist (i.e., Domperidone).
 - Hypotension particularly in patients on antihypertensives.
- Other common side effects:
 - Confusion.
 - Insomnia
 - Nightmares.
 - Schizophrenic-like syndrome delusions and hallucinations due to enhanced CNS concentrations of dopamine.

1. Levodopa – Adverse Drug Effects....

Dyskinesias – occur in 80% of patients on long-term levodopa therapy.

- Choreiform movements
- Dose-related higher doses = increased risk.
- Occur more frequently in younger Parkinson's patients

"Wearing off" effect

ADRs.....

- "On-off" Effect fluctuations in clinical response to levodopa.
 - "Off" = marked akinesia.
 - "On" = improved mobility but marked dyskinesia.
 - Thought to be related to fluctuations in levodopa plasma concentrations.
 - Fluctuations can be "smoothed out" by incorporating a dopamine receptor agonist into pharmacotherapy.
 - Pramipexole./Ropinirole./Apomorphine

Levodopa DI & CI

- Pyridoxine: not to be given with levodopa alone
- MAO –A inhib: hypertensive crisis
- CI: Psychotic patients, Angle –closure glaucoma. Cardiac disease-only with carbidopa, Active peptic ulcer: gi bleeding
- DRUG HOLIDAY :d/c for 3-21 days: not recommended

- 2. Dopamine Receptor Agonists.
- Ergot derivatives:
- 1.Bromocriptine selective D2 receptor agonist. Now rarely used ,better new DA agonists . Dose built up slowly over 2-3mths from 1.25mg BID to upto 7.5-30 mg
- 2. Pergolide: directly stimulates both D1 and D2 receptors.
- Loses efficacy over time.
 - Associated with valvular heart disease (33%).,hence d/c in many countries

Dopamine Receptor Agonists...

Ropinirole – D2 receptor agonist.

- Effective as monotherapy in patients with mild disease.
- Started -0.25 mg TDS---upto 2-8mg TDS.
- Metab by CYP3A2 : DI

Pramipexole

- preferential affinity for D3 receptor (also D2/D4).
 - Used primarily in patients with advanced Parkinson's disease.
 - Possibly neuroprotective scavenge H₂O₂
 - Started at 0.125 mg TDS---upto 0.5-1.5 mg TDS.
 Dose adjustment in renal ds

Rotigotine: TTS patch, efficacy similar, local rxn

Dopamine Receptor Agonists...Adverse Effects

- 1. GIT: anorexia, N, V: minimized by taking with meals. Constipation, Dyspepsia, bleeding peptic ulcers
- 2. CVS: postural hypo esp on initiation, painless digital vasospasm (ergots). Arrythmias
- 3. Dyskinesias: like that by levodopa
- Misc.: headache, nasal congestion, pulm. Infiltrates, pleural & retroperitoneal fibrosis, erythromelalgia

ADRs: Dopamine agonists...contd...

- 4.Mental disturbances: confusion, hallucinations, delusions: more common with these than with levodopa.
- Disorders of impulse control compulsive gambling, shopping ,betting, daytime sleep attacks: ropinirole, pramipexole
- CI: h/o psychotic illness or recent MI, active peptic ulcer. Ergot deriv CI in peripheral vascular disease.

- 3. Monoamine Oxidase Inhibitors (MAOIs)
- Two types of MAO have been characterized.
 - MAO-A primarily metabolizes NE and 5-HT.
 - MAO-B primarily metabolizes dopamine.
- Selegiline and Rasagiline.
 - -Selective, irreversible inhibitors of MAO-B.

MAO-B Inhibitors

3. Selegiline – MAO-B Inhibitor

- Effective in early Parkinson's disease (as monotherapy or in combination with levodopa).
- Enables reduction in levodopa dose or may smooth the "on-off" fluctuations associated with levodopa.
- Metabolite = Desmethylselegiline neuroprotective.

Adverse Effects

 Selectivity for brain MAO-B makes selegiline less likely to produce ADRs involving peripheral tyramine (i.e. cheese rxn).

Selegiline – MAO-B Inhibitor...

- —Blocks MAO-A at high doses.
 - Hypertensive crisis due to peripheral accumulation of NE.
- Fatal hyperthermia may occur when administered in conjunction with meperidine, cocaine, or fluoxetine

4. Catechol-*O*-Methyltransferase (COMT) Inhibitors.

- Inhibition of L-aromatic amino acid decarboxylase is associated with compensatory activation of COMT.
 - Increased plasma levels of 3-OMD = poor response to levodopa (competition for active transporter in the gut and at the BBB?).
- Adjunctive therapy in patients treated with levodopa.

Pharmacological Treatment of Parkinson's Disease

From: Youdim et al. 2006. Nature Rev Neurosci. 7: 295-309

4. Catechol-*O*-Methyltransferase (COMT) Inhibitors.

- Tolcapone and Entacapone
 - Selective COMT inhibitors diminish peripheral metabolism of levodopa.
 - May also reduce "on-off" fluctuations.
 - Adverse Effects: Related to increased plasma concentrations of levodopa.
 - Include dyskinesias, nausea, and confusion.
 - Other side effects: diarrhea, abdominal pain, orthostatic hypotension, sleep disorders, orange urine discoloration.
 - Tolcapone potentially hepatotoxic.

- 5. Muscarinic Cholinergic Receptor Antagonists.
- Muscarinic Receptors localized to striatal neurons.
 - Mediate cholinergic tremor
 - May cause presynaptic inhibition of dopamine release.
- Trihexyphenidyl and Benztropine
 - Useful in patients administered neuroleptics as anti-dopaminergic properties of these drugs antagonize effects of levodopa.
 - Improve muscle rigidity and tremor but have little effect on bradykinesia.

Antimuscarinics....

- –Adverse Effects
 - Characterized as "atropine-like" = dry mouth, inability to sweat, impaired vision, urinary retention, constipation, drowsiness, confusion.

6. Amantidine

- Antiviral drug with anti-Parkinsonian properties.
- Mechanism of action is unclear
 - Potentiates dopaminergic function by modifying synthesis, release, or reuptake of dopamine.
 - Therapeutic Effectiveness
 - Less effective than levodopa or bromocriptine
 - Therapeutic benefits are short-lived.

Amantidine..

- –Adverse Effects
 - Primarily CNS = restlessness, depression, irritability, insomnia, agitation, excitement, hallucinations, confusion.
 - Overdoses = acute toxic psychosis.
 - Others = headache, edema, postural hypotension, heart failure, GI disturbances

Apomorphine

- Apomorphine potent D1/D2 agonist.
 - Given via subcutaneous injection to provide temporary relief of "off" periods of akinesia.
 - Short period of effectiveness (~ 2 h).
 - Associated with several side effects (i.e., dyskinesias, drowsness, sweating, hypotension

Surgery -

Deep Brain Stimulation

 Brain pacemaker, sends electrical impulses to brain to stimulate the subthalamic nucleus.

Improves motor functions and reduce motor

complications.

 Complications include: brain hemorrhage, seizures, death.

Huntington's disease

- Characterized by loss of GABAergic medium spiny projection neurons in the striatum
- Caused by glutamate-induced neurotoxicity (?)
- Loss of GABAergic neurons that project from GP leads to disinhibition of thalamic nuclei and increase output to motor area of the cortex
- Symptoms consistent with excess dopaminergic activity

Huntington's disease: Treatment

- D2 receptor antagonist such as haloperidol and chlorpromazine have some effect at controlling the excess movement and some aspects of the psychiatric dysfunction
- Diazepam potentiates GABA and may reduce excess movement but only in the early stages of the disease
- Depression and impulsive behaviours may respond to antidepressant or propranolol (β -adrenergic antagonist)