

Terminology

Risk??

Risk Factor: Characteristic, condition or behaviour increasing the problem of developing a disease in a currently healthy individual.

i.e P (D+ / E+) > P (D+ / E-)eg. for lung cancer: Smoking.

Risk Factor: env. / behavioural / social / psycho / genetic etc. exposure to risk factor may be point / chronic.

Risk Assessment: Quantification / Extent of association / risk amount.

Risk Markers: Factors indirectly associated with the outcome.

eg. Neonatal Mortality:

Risk factors : Poor pre-natal care,

Casual factors : LBW

Marker : Low SES

Synergy : LBW & other complications.

Characteristics of Casual Factors:

- Consistency
- Strength
- Specificity
- Temporality
- Coherence

RISK FACTOR Vs CASUAL FACTOR

Casual Factor = A risk factor which causes disease

Risk factor ≠ casual factor (may be vice versa)

Why? The observed association between risk factor & disease

may also be due to confounders / markers and synergistic factors.

Confounders?? Synergistic Factors? Markers??

CONFOUNDING FACTORS

- Factor associated with exposure which independently of any such association is also risk factor for the disease.
- Factors distorting association between risk factor & disease by creating artificial relationships. A confounder is associated with both expo. and outcome, but unequally.

To eliminate the effect of confounding.

Matching

To ensure comparability of cases and controls.

- (a) Pair matching
- (b) Group matching
- Stratification

Suspected etiologic factors should not be used as potential confounders for

matching factors.

Examples of Confounding Factors

(1) Smoking & Lung cancer (age is confounder)

(2) Contra use (IUD) - Cervical cancer (age & marital status)

(3) OC - BC (age)

Synergistic Factors: Synergy means magnification of effects arising from different exposures / risk factors s.t. effect of exposures working together is greater than the sum of their individual effects. ie. P (AB) > P (A) + P (B).

R [Smoke & Drink] > R (Smoke) + R (Drink)

Difference between confounding and synergy:

- In synergy, we are interested in joint effect or effect modification. A effect modifier (syn. Factor) relates essentially to differences between the measures of associate at different levels of modifier.
- In confounding, crude measure of associated does not reflect in each category necessarily, but the association is consistent.

ASSOCIATION AND CAUSATION

Types of Association:

- Spurious / unreal
- Indirect
- Direct / casual

Types of Causation

- One to One
- Multi-factorial

Criterion for judging Causality of Association

- Temporality
 - Whether suspected cause precede the observed effect.
- Strength of association
 (RR or dose-response or duration response relationship)
- Specificity (One-One association, but a single cause may result in several outcomes)?
- Consistency
- Biological plausibility
- Coherence

Risk: Prob. / Prop. Of individuals suffering from particular disease out of total individuals.

No. of diseased individuals

Risk: P(D+) = ------

Total no. of individuals

in cross sec. study, Risk = Prev. rate

Note: In case of cohort study (fixed follow-up)

Risk = IR

No. of persons developing diseases during follow-up

= -----

No. of persons disease free at start of study

Probability and odds

- Probability
- Odds =No of times the event occurs/ No of times the event doesn't occur
 - =Probability that the event will occur divided by the Probability that the event will not occur.

P (Occurrence of event)

P (No. occurrence of the event)

Odds of an event (say disease) is defined as the ratio:

- Probability can be expressed as odds and odds can be expressed as probability.
- Odds = probability/1-probability= P/1-P
- P = odds/1 + odds

Odds Ratio (OR) or Relative Odds (RO):

OR is used to compare absolute risks in two categories may be E+ and E- or D+ and D-

In case of low risk / rare disease, OR gives an excellent approximation of relative risk (RR).

Relative Risk:

```
Risk among expo
  RR =
            Risk among unexpo
In Cross-sectional study:
            PR among expo
IR
            PR among unexpo
In Cohort Study:
             (IR) expo
            (IR) unexpo
```

ATTRIBUTABLE RISK (AR)

Prop of diseased individuals attributable to a particular expovariable ie The amount of risk which can be attributed to a particular risk factor:

AR (2) =
$$P(E+/D+)$$
. AR (I) = $(Expo \text{ rate among diseased})$. AR (I)

AR (3) = $P(D+)$ - $P(D+/E-)$

$$P(D+)$$
= I - $P(D+/E-)$

$$P(D+)$$
where $P(D+)$ = Disease rate in the population ie PR. Another form:

AR (3) = $P(E+)(RR-I)$

$$I+P(E+)(RR-I)$$

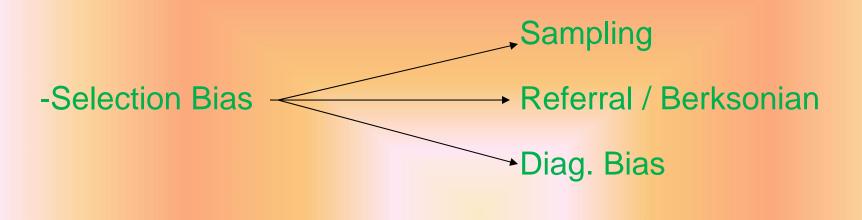
- AR guides us in management of individual patients.
- AR gives the amount of risk that can be attributed to expo to a particular risk factor.
- eg. Epilepsy & Delivery type

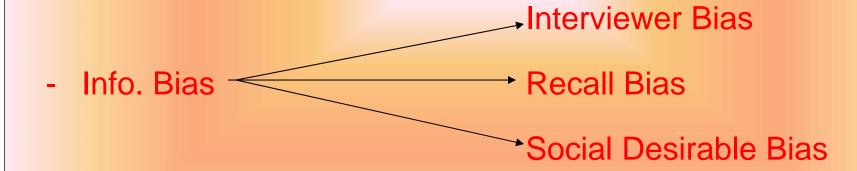
 AR gives us the risk of epilepsy developing as a consequence of forceps delivery.
- Other syno terms of AR:

Risk difference =
$$P(D+/E+) - P(D+/E-)$$

= $(Risk) expo - (Risk) unexpo.$

≡ Excess Risk ≡ Rate Difference give crude expressions of AR.


POPULATION ATTRIBUTABLE RISK (PAR)


PAR is a measure of excess amount of risk of a particular disease in the population that can be solely attributed to the risk factor.

$$PAR = AR P(E+)$$
 (in population)

If an independent estimate P (E+) ie proportion of people exposed in the population is available, then PAR can be obtained.

TYPES OF BIASES / ERRORS IN EPIDEMIOLOGICAL STUDIES

