SAMPLE SIZE DETERMINATION IN FIXED SAMPLE DESIGNS

Dinesh Kumar Walia
Department of Community Medicine
Government Medical College,
Chandigarh, India

Prerequisites

• Utility of Sample Size Estimation

• Type of Data (Qualitative,/ Quantitative)

• Factors affecting Sample Size

- Type of Study Designs
- Level of Significance/Confidence Coefficient
- Concept of Errors in Testing of Hypotheses

Type-I error (α)

Type-II error (β)

Power of the Test

At planning stage, we have to take decision regarding optimum sample size:

Samples Size depends upon :

- Objective of the Survey
- Type of Data (Qualitative,/ Quantitative), Summary measure of interest (proportions or means)
- Study Design (cross-sectional/longitudinal/case-control/cohort/experimental etc)

- Critical Variables/most important variables or characters
- Finance and Resources Available
- Degree of precision
- Permissible Error: absolute amount of sample error that can be tolerated

- Desired Confidence Level (1-α)
- Rough idea about/ Expected variability in the study population
- Population size (Finite / Infinite)

SOME BASIC ISSUES BEFORE SAMPLE SIZE ESTIMATION

• How big a risk can be taken that two treatments are incorrectly designated as not significantly different? This risk is referred to as the β error and 1-β is defined as the power of a trail.

What is the smallest difference d between treatments (in term of a quantitative difference such as a percentage of responders) that is important to detect?

How big a risk can be taken that the two treatments are incorrectly designated as significantly different? This is, in statistical terms, the level of significance α ?

Concept of Errors in Testing of Hypotheses

Type-I error (a)

Type-II error (β)
 a = Level of Significance
 (1-a) = Confidence Level
 (1-β) = Power of the Test

Type I and Type II Errors

Decision on Null Hypo	Actual Situation	
taken on the	Null hypothesis	Null hypothesis
basis of	is true	is false
sample		
Null Hypothesis Accepted(not rejected)	Correct Decision (No error) (1- a)	Type-II error (β)
Null Hypothesis rejected	Type-I error	Correct Decision $(1-\beta)$

Note:

- Common Choice: a = 5%If Power 80% $\beta = 20\%$
- SE decreases with increase in sample size
- Allow 10-20 % non response and inflate sample size by accordingly, eg for 20% non response (divide n_{opt} by 0.8)

SAMPLE SIZES FOR SINGLE GROUP STUDIES

(a) Estimating single mean:

95 % CI for Population Mean:

Mean <u>+</u> 1.96 SE

Mean \pm 1.96 σ/\sqrt{n}

$$=> n_{opt} = (1.96)^2 \sigma^2 / d^2$$

If, d= 1.96 SE Then

$$n_{opt} = \frac{4s^2}{d^2}$$

Where d = minimum difference to be tolerated

eg if
$$d = \pm 2$$
, $s = 15$,

$$n_{opt} = 216:09 \approx 217$$

For 99% CI, 1.96 is replaced by 2.58

For non response correction

$$20\% \text{ of } 217 = 43.4 \approx 44$$

$$n_{\rm opt} \approx 217 + 44 = 261$$

