

STATISTICS IN MEDICAL SCIENCES

Why? & What is Statistics / Biostatistics

"Statistics may be defined as "a body of methods for making wise decisions in the face of uncertainty." ~W.A. Wallis.

What is Statistics and Biostatistics/Medical Statistics

 " Statistics may be defined as "a body of methods for making wise decisions in the face of uncertainty."

~W.A. Wallis.

• Statistics involve planning, designing, collecting, summarizing /reducing, analyzing, presenting, interpreting of data, and drawing inferences/conclusions from data.

Why? & What is Statistics / Biostatistics

STATISTICS IN MEDICAL SCIENCES

Uses in Epidemiology:

- Planning, designing and analysis of experiments / epidemiological studies and analyzing results.
- Studying natural history of diseases, occurrence and progression and finding causes / associated factors.
- To study morbidity, mortality and fertility patterns of community
- To determine met and unmet health needs of the community.
- To determine success / failure of specific health programmes and evaluating plan of action.

- Fixing priorities in adoption of future health measures.
- Remodelling and strengthening of health services.
- To assess impact of intervention programmes.
- To study hazards of different toxicants and studying dose
 response relations.
- Model building for different diseases of public health importance.

Uses in Clinical Medicine:

- Decisions related to clinical diagnosis predicting likely outcomes of intervention programmes, selection of appropriate treatments.
- Classifying individuals as N & AN, Accuracy of diagnostic / surgical procedures, testing efficacy of drugs and vaccine

Uses in Clinical Medicine:

- Decisions related to clinical diagnosis predicting likely outcomes of intervention programmes, selection of appropriate treatments.
- Classifying individuals as N & AN, Accuracy of diagnostic
 / surgical procedures, testing efficacy of drugs and vaccine.

STATISTICS IN MEDICAL SCIENCES

Uses in Epidemiology:

- Planning, designing and analysis of experiments / epidemiological studies and analyzing results.
- Studying natural history of diseases, occurrence and progression and finding causes / associated factors.
- To study morbidity, mortality and fertility patterns of community
- To determine met and unmet health needs of the community.
- To determine success / failure of specific health programmes and evaluating plan of action.

Uses in Epidemiology:

- Fixing priorities in adoption of future health measures.
- Remodelling and strengthening of health services.
- To assess impact of intervention programmes.
- To study hazards of different toxicants and studying dose
 - response relations.
- Model building for different diseases of public health importance.

STSTISTICS helps in

- Quantification of the scientific facts
- Substantiating the findings in clinical research with magnitude and degree of precision.
- Comparability of the results
- Standardization of the results

Definition Of Statistics:

Scientific study of methods dealing with collection, processing, reducing, presenting, analyzing, interpreting results, making inferences and drawing conclusions from data.

Mainly: Collection, description and analysis to draw conclusions.

Distrusts???
Primary

Data

Secondary

Routine / Regular

Data Collection

Surveys with specific objectives

Quality of Data:

- Reliability (Consistency)
- Validity (indicative of the condition)

[Data should be capable to distinguish those having the condition from those not having]

Sensitivity
Validity
Specificity

Quantitative (Variables)

Data

Qualitative

(Attributes)

Quantitative:

Ht, Wt, BP, Hb, Age, Calorie, Consumed, Serum Cholestrol, S. Bilrubin, S. Urea, S. Cretnine, BPS score etc.

Qualitative:

Gender, sickness, religion, SES, caste, nationality, social background, anemic condition, severity of disease, blood groups, smoking status, nutritional grades, stages of disease (cancer etc), severity of the disease.

Parity, calorie, WBC/RBC, no. of HH, No. of family members, age in years.

BP (due to = limitations of Measurements)

VARIABLES TYPES

- 1. Categorical variables (e.g., Sex, Marital Status, income category)
- 2. Discrete variables (e.g., Number of Children in a family)
- 3. Continuous variables (e.g., Age, income, weight, height, time to achieve an outcome)
- 4. Binary or Dichotomous variables (e.g., response to all Yes or No type of questions)

Same Variable: Different Scales

- The variable "Education" is only Nominal when measured by type of education, such as private or public
- It is Ordinal when measured by level of education such as high school, college or postgraduate
- It is Interval when measured by number of years i.e. 5, 10, 15 or 20 years of education.

Measures of Central Tendency:

- Definition
- Why called measures of central tendency?
- Different Measures:
 - Mean
 - Median
 - Mode

Calculations:

Mean:

$$\overline{x} = x_1 + x_2 + ---- + x_n$$

No. of observations

Calculations:

Discrete Classification:

Value:
$$x_1$$
 x_2 ------ x_n

Frequency: f_1 f_2 f_n
 $\overline{x} = f_1x_1 + f_2x_2 + ----- + f_nx_n$
 $f_1 + f_2 + ---- + f_n$
 $f_1 + f_2 + ---- + f_n$

Median: Mid value in an arranged set of observations.

Value which divides the distribution in two equal parts.

Steps: (I) Arrange observations in ascending or discending order.

(II) Find the middle value.

(a) When N is odd:

⇒ Only one middle value

ie (N+1) the observation

2

Md = Size of (N+1) the observation in arrange set of

2

observations eg: 2, 1, 11, 9, 10, \Rightarrow 1, 2, 9, 10, 11

(b) When N is Even: There will be two middle values.

$$\frac{(N)}{2}$$
th and $\frac{(N + 1)}{2}$ th observations

Average of these two middle observations:

$$Md = (9 + 10) / 2 = 9.5$$

Mode: The value occurring most frequently.

⇒ The value whose frequency is maximum.

Relationship between Mean, Md, Mode.

$$M_0 = 3 Md - 2 Mean$$

Calculation of Measures of Central Tendency from grouped data:

Mean:
$$\overline{x} = A + h \sum_{N} fu$$

Where A = Assumed Mean

h = Width of class interval

N = Total frequency

f = Frequency of the class

u = Working unit

Median:

$$Md = L + h (N - C)$$

$$\frac{-}{f} \frac{2}{2}$$

L = Lower limit of Median class

h = Width of class interval

f = Frequency of median class

N = Total frequency

C = Cumulative frequency of the class just before Median Class.

Median Class: Class containing N th observation.

2

Mode:

$$M_0 = L + h (f_1 - f_0)$$

$$\frac{1}{(2f_1 - f_0 - f_2)}$$

L = Lower limit of modal class

f₀= Frequency just before modal class

f₁= Frequency of modal class

f₂= Frequency just after modal class

Modal Class: The Class having maximum frequency.

Short Cut Method:

	+				+	
Protein Intake	f	Mid value (x)	x – A	u = <u>x-A</u> 10	fu	
20 – 30	4	25	-20	-2	-8	
30 - 40	8	35	-10	-1	-8	
40 – 50	12	45	0	0	0	
50 – 60	18	55	10	1	18	
60 - 70	5	65	20	2	10	
70 – 80	3	75	30	3	9	
N = 40		_		∑ fu =	∑ fu = 21	

Mean:

$$x = A + h \sum_{N} fu$$

$$= 45 + 10 \times 21$$

$$= 45 + 4.2$$

$$= 49.2$$

Е	X.						
	Pr	otein Inta	ke No. of	Mi	d value	1	. x
		(gm/day)	Individuals				
			f		X		
		20 - 30	4		25		100
		30 – 40	8		35		280
		40 – 50	12		45	!	540
		50 – 60	18		55		990
		60 - 70	5		65	4	325
		70 – 80	3		75		225
			$\sum f = N = 40$			∑f.x	= 2460
		1	Mean	X	=	∑fx	
						N	
M	lea	an Protein	Intake (gm/day)	=	2460	<mark>) = 49.2</mark>	
					40		

Calculation of Median:

Protein Intake	No. of Individuals	Cumulative
(gm/day)	f	X
20 – 30	4	4
30 – 40	8	12
40 – 50	12	24
 50 − 60	18	42←——
60 – 70	5	47
70 – 80	3	50

Calculation of Mode:

Mode = L + h
$$(f_1 - f_0)$$

 $(2f_1 - f_0 - f_2)$
h = 1₀, $f_0 = 12$
 $f_1 = 18$
 $f_2 = 5$
M₀ = 50 + 10 $(18 - 12)$
 $(2 \times 18 - 12 - 5)$
= 50 + $\frac{10 \times 6}{19}$

Measures of Dispersion or Measures of Variability

- Meaning
- Need:
 - Comparison
 - Reliability of Measures of CT.

eg.
$$\rightarrow$$
7, 8, 9, 10, 11
 \rightarrow 3, 6, 9, 12, 15
 \rightarrow 1, 5, 9, 13, 17

- Separation of normal & Abn.
- Finding SE of estimates
- Probable Ranges / CI
- Tests of Significance

Different Measures of Variability:

- Range
- Inter-quartile Range
- Mean Deviation
- Standard Deviation
- Coefficient of Variation (CV)

- (1) Range = x_{max} x_{min}
- (2) Quartile Deviation or Inter-quartile Range

$$= Q_3 - Q_1$$

(3) Mean Deviation (MD)

$$MD = \frac{\sum fIx - MI}{N}$$

(4) Standard Deviation (SD)

$$SD = \sqrt{\sum (x - x)^2}$$

Short-cut formula (grouped data)

$$SD = h\sqrt{\sum fu^2 - (\sum fu)^2}$$

$$N$$

Ex.

		ТВ	
BCG Vaccine	Yes	No	
Yes	6	12	18
No	8	3	11
Total	14	15	29

Coefficient of Assoc.

$$Q = 6 \times 3 - 8 \times 12$$

$$= 6 \times 3 + 8 \times 12$$

$$= 18 - 96 = -78$$

$$= 18 + 96 = 114$$

