

" Statistics may be defined as "a body of methods for making wise decisions in the face of uncertainty." ~ W.A. Wallis.

Meaning of Tests of Significance:

 Statistical procedures to draw inferences from samples about population

Why required?

- Whether difference between sample estimate and population values is significant or not?
- Differences between different sample estimates significant or not?

Meaning by Significant and Non Significant Differences

Terminology

- Hypothesis
- Null Hypothesis
- Normal Curve
- Alternate Hypothesis
- Acceptance & Rejection Regions
- Right tail & left tail tests.
- Level of significance
- Type I error (a-error)
- Type II error (β-error)
- Power of the Test

- State clearly Null Hypo (Ho)
- Choose Level of Significance (a)
- Decide test of Significance
- Calculate value of test statistic
- Obtain P-Value and Conclude Ho

More About Acceptance and Rejection Regions

Acceptance Region : Region in which Ho is accepted

Rejection Region: Region in which Ho is rejected.

- If z cal > Za
- Then P < a → Ho is rejected</p>
- If Zcal/ < Za</p>
- Then P > a → Ho is accepted
- Usually a = 0.05, May be 0.01.,0....

Pictorial Representation of a Statistical Test

Criterion For Testing Based on Normal Distribution

- If | z cal | < 1.96 → P > 0.05 (Non Sig)
- If | z cal | > 1.96 → P < 0.05 (Sig)
- If $z > 2.58 \rightarrow P < 0.01$ (Highly Sig)
- If $z > 3 \rightarrow P < 0.001$ (Highly Sig)

Parametric Statistics

Z-test (for large samples) for testing significance of

- single population mean,
- difference of two population means,
- single population proportion,
- difference of two population proportions.

t-test (for small samples)

- for testing significance of
- single population mean,
- difference of two population means,
- paired data (Effectiveness of Drug)
- correlation coefficient.

- Testing equality of several means
- Testing equality of two population variances.
- One-way, Two-way and Multi-way ANOVA

Chi-square:

- Testing Associations
- Goodness of Fit
- Significance of Risk

$$H0: RR=1 \text{ or } OR=1$$

Normal Test (z-Test):(For large samples, Quantitative & Qualitative Data))

(a) Test for Significance of Difference Between Two Group Means

■ Ho:
$$\mu_{1} = \mu_{2}$$

$$z = x_1 - x_2$$
 $s\sqrt{1 - x_2}$
 $1 - x_2$
 $1 - x_2$

- Ex. Normal Test of Means
- Mid Arm circumference (MAC) of 625 American and 625 Indian Children.

MAC	American	Indian	
	Children	Children	

$$Z = \frac{x_{12025}}{12025}$$

$$\sqrt{s_1^2 + s_2^2}$$

$$n_1 \quad n_2$$

$$\sqrt{5^2 + (5.4)^2} = 16.98$$
625

$$625$$
 Z cal >3 \rightarrow P < 0.001 Highly Significant

- (b) Tests for two proportions
- Ho:---- (Qualitative Data)
- $z = p_1 p_2$

$$n_1 n_2$$

- $p_1 = prop. In I Ip.$ p = pooled
- $p_2 = prop in II Ip.$ q = prop. 1-p

Prob. From a popn, 40 females using oral contraceptives and 60 females using other contra, were randomly selected and the number of hypertensive cases from both groups were recorded:

Type of Contra Total Women Hyp. oral 40 8
others 60 15

Test the hypothesis that the prop. Of patients with hyp. Is same for the two groups.

Ex: Normal Test of Proportions

Gp I

Gp II

Sample size n₁=150

 $n_2 = 160$

Cp Abn

129

110

Ho: Prop. Of CP. Abn. Is same

$$p_1 = 129 = 0.86$$

150

$$p_2 = 110 = 0.68$$

160

```
p = \text{overall prop.} = (129 + 110)
                        (150+160)
     (n_1 p_1 + n_2 p_2)
  = (n_1 + n_2)
  = 0.77
q = 1-p = 0.23
    p_1-p_2
   \sqrt{pq} (1 + 1) = 3.61
          n_1 \quad n_2 \quad P < 0.001
                  (Highly Sig)
```

- t-test (for small samples Quantative Data)
- (a) Comparison of means of two independent samples

student's t-test: Ho:-----

$$t = \frac{\overline{x}_1 - \overline{x}_2}{s \sqrt{1 + 1}}$$

$$n_1 \quad n_2$$

 $\frac{x_1}{x_2}$ = Mean of I group. $\frac{\overline{x}}{x_2}$ = Mean of II group.

- \bullet n_1 = no. of cases in I group.
- \blacksquare n_2 = no. of cases in II group.
- \blacksquare s = pooled s.d.
- $s_2 = \frac{(n_1-1) s_1^2 + (n_2-1) s_2^2}{n_1 + n_2 2}$
- (b) Comparison criterion:
- \rightarrow 2f t cal < t

tab $(n_1 + n_2 - 2)$ d.f.

Then $P > 0.05 \rightarrow Ho$ is accepted

If t cal > t tab (.05), $(n_1 + n_2 - 2)$ d.f.

Then P $< 0.05 \rightarrow$ Ho is rejected

Prob. Cumulative weight losses during insulin induced hypoglycemia for 12 patients treated with propanol and 12 control patients. Test the significance of difference between mean cumulative wt losses.

S D
10
8

t =
$$x_1 - x_2$$

 $s \sqrt{1} + 1$
 $n_1 n_2$
 $S^2 = (n_2 - 1) s_1^2 + (n_2 - 1) s_2^2$
 $n_1 + n_2 - 2$

$$n_1 = 12,$$

$$n_2 = 12$$

```
(b) Test for effectiveness of a
 particular drug.
  (case of 2- related/dependant
 samples)
      s/\sqrt{n}
 d = AT - BT
 \bar{d} = \Sigma d = Sum \text{ of all diff}
              No. of paired observations
 s^2 = variance of differences
 (s=s.d.)
 s^2 = 1 [\Sigma d^2 - (\Sigma d)^2]
```

Conclusions

If t cal < t tab 5%, (n-1)d.f.

Then P > 0.05, Ho is accepted.

If t cal > t tab 5%, (n-1) d.f.

Then P < 0.05, Ho is rejected

Ex. Paired t-test

Sr.No. Serum Cholesterol

	$d^2 = (x_2 - x_1)^2$					
	Before (2	X_1) After $(A_2 \rightarrow A^2)$	$T-BT_{X_2-X_1}$			
1	201	200				
2	231	236	5			
3	221	216	-5			
4	260	223	-27			
5	228	224 -1	-4			
6	237	216	-21			
7	326	296	-30			
8	235	195	-40/			
9	240	207				

```
10 267
                                      -20
                          247
                                       -74
11 284
                          210
12 201
                          209
                               \Sigma d = -242
n=12
\Sigma d^2 = 10766
\bar{d} = \Sigma d = -20.17
     n
S^2d=
                  [\Sigma d^2 - (\Sigma d)^2]
       (n-1)
    = 1 [10766 - (-242)^2]
      11
                       12
Sd = 6.67
```

```
t = 3.11
tab, II df
1\% | \text{level} = 2.20
tab, II df
5% level
t= đ
  s/\sqrt{n}3.02 < t tab
```

```
    x<sup>2</sup>- Chi Square Test

            (For Qualitative Data)
Ho: There is no significant association
    between two attributes.
Ho: Ro=1 or Ho: RR=1
    (Case control) (cohort)
Formula:
  x^2 = \Sigma (O-E)^2
  O = observed freq.
  E = Expected freq.
  E = R * C
```


• d.f. = (r-1)(c-1) (2-1)*(2-1)1*1=1

NOTE:

- Not necessarily Disease & exposure may be any two attributes A & B
- (2) Not necessarily 2*2 table any number of categories of A & B.

Short cut Method :

$$X^2 = \frac{N (ad-bc)^2}{R_1 R_1 C_1 C_2}$$

If X^2 cal $< X^2$ tab, 5%
Then $P > 0.05 \rightarrow$ Ho is accepted
If X^2 cal $> X^2$
Then $P < 0.05, \rightarrow$ Ho is rejected
For $2 * 2$ table (1 d.f.)
 X^2 tab, 5% = 3.84

- Examples
- Prob 1. Test whether there is any association between death from C.H.D and ECG Abnormalities:

ECG Abn	De	eath due to	o CHD
	Yes	No	Total
 	10	40	50
\ \	15	135	150
Total	25	175	200

■ Ho: $X^2 = N (ad-bc)^2$ $R_1 R_2 C_1 C_2$ $= 200(10 * 135 - 15 * 40)^{2} = ...$ 50 * 150 * 25 * 175 $^{2} = \Sigma (0-E)^{2}$ IInd Method: E(10) = ...E(40) = ...E(15) = ...E(135) = ...

Prob 2 :

Test whether there is any asso between smoking and hypertension?

or

Test whether there is any evidence that smoking is a risk factor for hypertension.

+ HTN

Smoking

Yes 120 280

No 30 570

Parametric Statistics: where to apply?

- The given observations are independent
- Observations come from normal distribution
- The hypothesis involve population parameters
- Parametric procedures may be applied on measurement data only
- Computations are sometimes difficult
- Parametric procedures are more robust than Non-Parametric procedures.

Choice of statistical test for <u>independent observations</u>

Outcome variable

		Nominal	Cate goric al	Ordinal	Quantitat ive Discrete	Quantitativ e Non- Normal	Quantitative Normal
I n	Nominal	χ ² or Fisher's	χ²	χ ² or Mann- Whitney	Mann- Whitney	Mann-Whitney or log-rank (a	Student's t test
p u	Categorical (>2 categories)	χ²	χ²	Kruskal- Wallis (b)	Kruskal- Wallis (b)	Kruskal-Wallis (b)	ANOVA (c)
t	Ordinal (Orde red categories)	χ ² or Mann-	(e)	Spearman rank	Spearman rank	Spearman rank	Spearman rank or linear
V		Whitney					regression(d)
a r	Quantitative Discrete	Logistic regression	(e)	(e)	Spearman rank	Spearman rank	Spearman rank or linear regression (d)
i a b	Quantitative non- Normal	Logistic regression	(e)	(e)	(e)	Plot data and Pearson or Spearman rank	Plot data and Pearson or Spearman rank
I							and linear regression
е	Quantitative Normal	Logistic regression	(e)	(e)	(e)	Linear regression (d)	Pearson and linear regression

Non-Parametric Statistics: where to apply?

- The given observations are independent
- Observations may not be from normal distribution
- Based on minimum assumptions
- The hypothesis is not concerned about population parameters
- Non-Parametric procedures may be applied on weak measurement scale i.e. on count data or rank data
- Computations are simple.

Non-parametric Statistics

- Sign test: Testing median
- Wilcoxon signed rank test: Testing median
- Run test: For randomness
- Median test: For testing equality of two medians
- Mann-Whitney test: For testing equality of two medians
- Chi-square test: Testing "goodness of fit", testing independence, homogeneity
- Kruskal Wallis: One way ANOVA
- Friedman: Two-way ANOVA

