CARBOHYDRATE METABOLISM

Clinical importance of Glucose

Glucose-preferred source of energy for most tissues.

Brain cells derive energy mainly from glucose.

Normal fasting glucose levels---70-110mg/dL

GLYCOLYSIS

Glucose is converted to

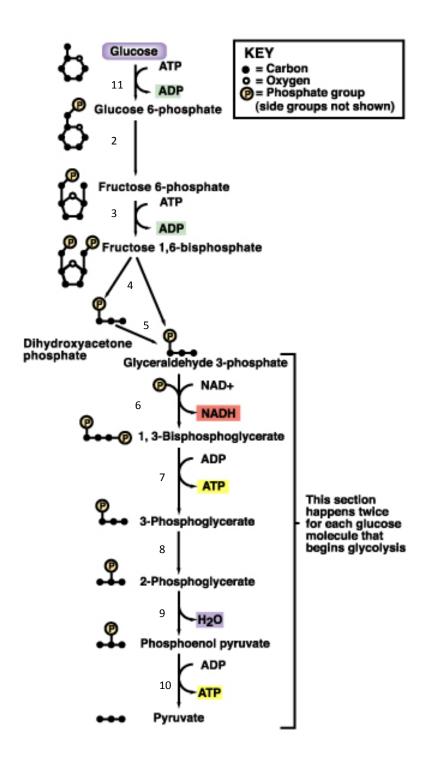
Pyruvate—aerobic conditions.

OR

Lactate----anaerobic conditions.

Site of reactions----Cytoplasm

Significance of Glycolysis


- Only pathway –in all the cells of the body.
- Only source of energy for erythrocytes.
- Anaerobic glycolysis---major source of energy for muscles.
- Provides carbon skeleton for synthesis of nonessential amino acids as well as glycerol for fat.

Gibbs Free Energy Changes

Rxn#	Enzyme	ΔG°'(kJ/mol)	$\Delta G(kJ/mol)$
1	Hexokinase	-16.7	-33.5
2	Phosphogluco-isomerase	+1.7	-2.5
3	Phosphofructokinase	-14.2	-22.2
4	Aldolase	+23.9	-1.3
5	Triose phos. Isomerase	+7.6	+2.5
6	G-3-PDH+12.6	-3.4	
7	Phosphoglycerate kinase	-37.6	+2.6
8	Phosphoglycerate mutas	+8.8	+1.6
9	Enolase	+3.4	-6.6
10	Pyruvate kinase	-62.8	-33.4

Identify:

endergonic rxns
exergonic rxns
coupled reactions
oxidation/reduction rxns
transfer reactions

Steps of Glycolytic Pathway

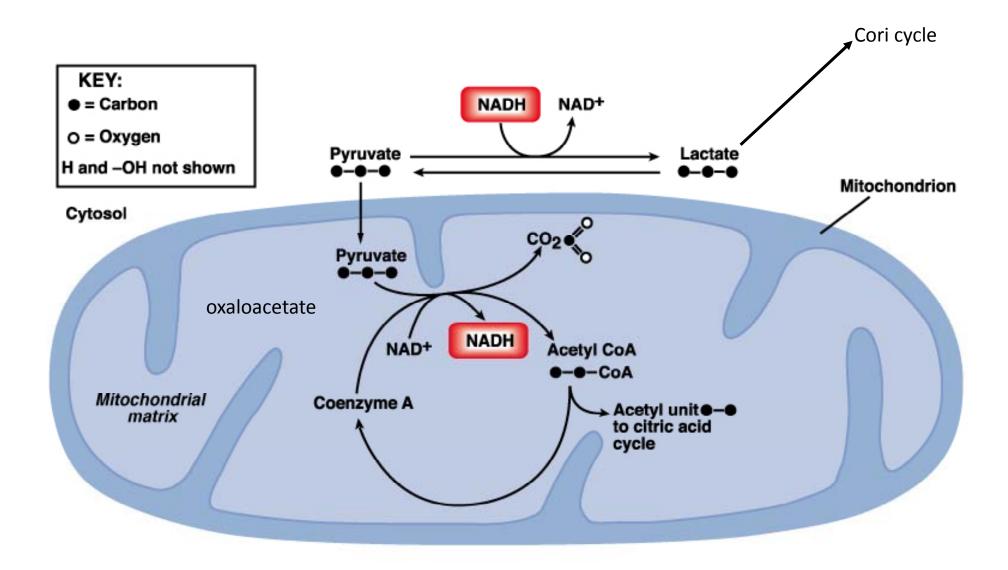
Step 1

- Glucose-----G-6-P
- Enzyme-----HK/GK
- Reaction –irreversible
- Committed step

Step-2 of Glycolysis

- G-6-p
 Enzyme----isomerase
- Reversible.
- Step-3 of Glycolysis
- F-6-p
 F-1,6-BP
 Irreversible.
- Enzyme-----PFK-1
- Steps 1,2 and 3 are energy investment phase.

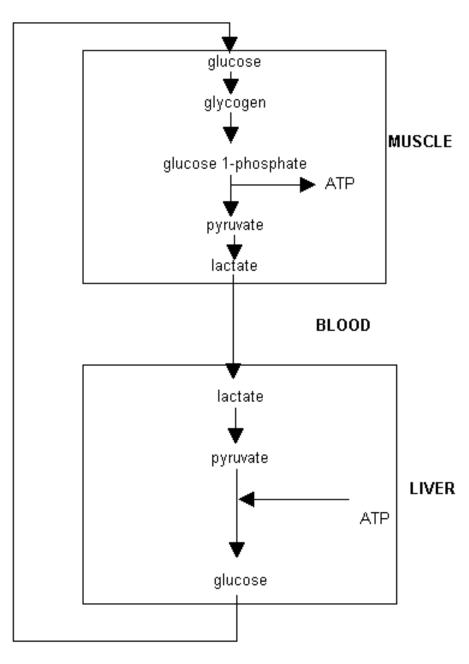
Step-4- of Glycolysis


- F-1,6-BP \rightarrow Glyceraldehyde-3-P and DHAP.
- Enzyme—Aldolase.
- Splitting Reaction.
- Reversible.
- Step-4A- of Glycolysis
- Glyceraldehyde-3-P ←→ DHAP.
- Enzyme—Triose phosphate isomerase.

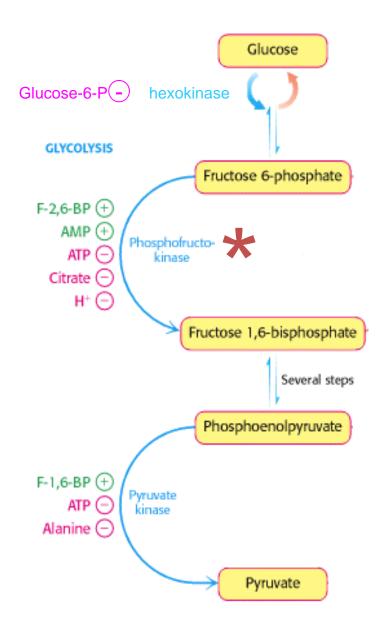
Step-5- of Glycolysis

- Glyceraldehyde-3-P →1,3 BPG
- Enzyme--- Glyceraldehyde-3-P dehydrogenase.
- Dehydrogenation and phosphorylation.
- Reversible reaction.
- NAD⁺ → NADH
- Step-6- of Glycolysis
- 1,3 BPG →3PG
- ATP is released.
- Substrate level phosphorylation
- Step-7- of Glycolysis
- $^{3PG} \rightarrow 2PG$

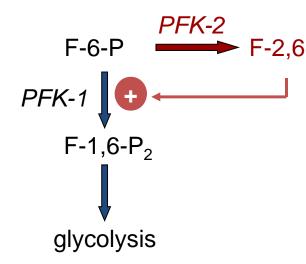
- Enzyme---Phosphoglycerate mutase.
- Reversible reaction.
- Step-8- of Glycolysis
- 2PG converted to phosphoenolpyruvate (PEP).
- Enzyme---Enolase.
- Fluoride irreversibly inhibits the enzyme.
- Step-9- of Glycolysis
- PEP dephosphorylated to pyruvate.


- Enzyme ----Pyruvate kinase.
- Irreversible reaction.
- Step-10- of Glycolysis
- During anaerobic conditions Pyruvate is converted to Lactate which enters Cori's cycle.

Regulation of glycolysis


- Glycolytic flux is controlled by need for ATP and/or for intermediates formed by the pathway (e.g., for fatty acid synthesis).
- Control occurs at sites of irreversible reactions
 - Hexokinase or glucokinase
 - Phosphofructokinase- major control point; first enzyme "unique" to glycolysis
 - Pyruvate kinase
- Phosphofructokinase responds to changes in:
 - Energy state of the cell (high ATP levels inhibit)
 - H+ concentration (high lactate levels inhibit)
 - Availability of alternate fuels such as fatty acids, ketone bodies (high citrate levels inhibit)
 - Insulin/glucagon ratio in blood (high fructose 2,6-bisphosphate levels activate)

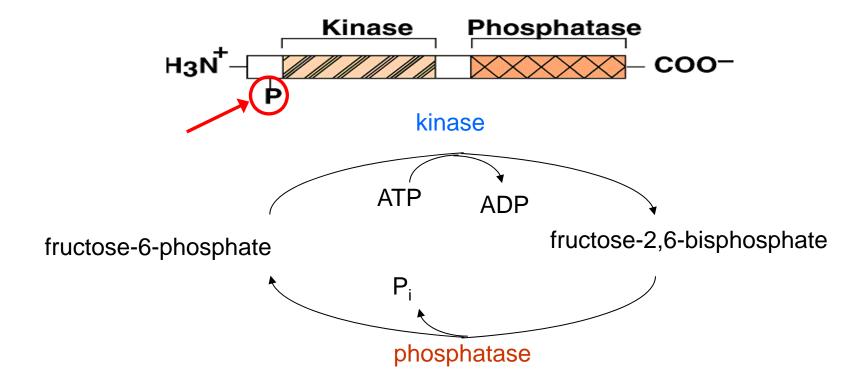
Cori Cycle


GLYCOLYSIS & GLUCONEOGENESIS

Control points in glycolysis

Phosphofructokinase (PFK-1) as a regulator of glycolysis

PFK-1 activated by: Fructose-2,6-bisphosphate (F-2,6-P₂)



Activates PFK-1 by increasing its affinity for fructose-6-phosphate and diminishing the inhibitory effect of ATP.

Phosphofructokinase-2 (PFK-2) is also a phosphatase (bifunctional enzyme)

Bifunctional enzyme has two activities:

- 6-phosphofructo-2-kinase activity, decreased by phosphorylation
- Fructose-2,6-bisphosphatase activity, increased by phosphorylation

