Carbohydrate Storage and Synthesis in Liver and Muscle: Glycogen

Glycogen – 12 topics Investing for the future

Carbohydrate Metabolism Outline of Topics

Glucose Fuel Storage and mobilization for oxidaton

- Introduction
- **Structure of Glycogen** highly branced $\alpha(1,4)$ -glucose polymer
- Glycogenesis Glc incorporated into glycogen (liver & muscle, kidney)
- Glycogenolysis –Glucose mobilized from glycogen in liver and muscle
- Hormonal regulation of hepatic glycogenesis vs. glycogenolysis insulin vs. glucagon
- Mechanisms of glucagon action Signals phosphorylations, pathways flip
- Glycogenolysis in liver plasma glycemia maintenance: acute vs. postabsorbtive
- Glycogenolysis in muscle Mobilizing glucose for ATP contraction activity
- Regulation of glycogenesis replenish glycogen stores vs. immediate needs
- Gluconeogenesis de novo (new) glucose from non carbohydrate carbon skeletons
- Regulation of gluconeogenesis De novo glucose synthesis fueled by fat oxidation
- Interconversions of fructose/galactose/mannose/glucose glycoproteins, etc., ...
- Inborn errors of metabolism glycogen storage diseases

Glycogen Metabolism Introduction

- Red cells and the brain Have an absolute requirement for blood glucose for their energy metabolism.
- These cells consume about 80% of the glucose (200 g, 1.1 mol, ca. 1500 kcal) consumed per day by a 70 kg human, in good health.
- Blood and extracellular fluid volume contains about 10 g glucose must be replenished constantly.
- Assumes a blood volume = 7 L, hematocrit = 45%, and no other distribution system operates.
- Normally, blood [glucose] range is between 4 6.5 mM = glycemia (about 80 120 mg/dL)

Hypoglycemia – hyperglycemia - glycemia Glycogen Metabolism [glucose], in blood plasma Introduction

Prandial (meal): preprandial, postprandial, ... postabsorptive

Before meal

- hypoglycemia (4–2.5 mM, 45 mg/dL);
- extreme hypoglycemia, <2.5 mM, life-threatening hypoglycemia rapidly compromises brain function, leading to confusion and disorientation.

After meal

- glycemia rapidly exceeded by absorbed glucose from digestible meal carbohydrate), rapidly becomes ...
- hyperglycemia (>6.5 mM) lasts 2-3 hrs, ... glycemia

Post meal

- homeostasis glycemia maintained: ~ 4-5 mM (80-100 mg %), resting [glucose].
- Such control due to: in part, glycogen synthesis (all tissues). Up to max of 1—2 % of muscle tissue wt (work) and 4—6 % liver wt for later release of glucose from liver to supply glucose to body.

Glycogenesis vs. glycogenolysis Liver maintains blood [glucose]

Glycogen Metabolism Cyclic responses

Glucose stored as glycogen: highly branched dendrite-like polymer, a polysaccharide.

- Glycogenesis glycogen synthesized during and after a meal.
- Glycogenolysis releases glucose into blood (Like a controlled timerelease)

Total heptic glycogen stores barely able to maintain blood [glucose] beyond 12 hour (fasting).

Fig. 12.1 Sources of Blood Glucose....

Gluco<u>neo</u>genesis makes <u>new</u> glucose during post absorptive state, before meals, and during sleep. Glycogenolysis declines to near depletion of glycogen after 12-24 hrs – Liver uses gluconeogenesis to maintain blood [glucose].

Glycogen Storage Various Tissues

Carbohydrate Metabolism

Structure

Tissue	Туре	Amount	% of tissue mass	Calories
liver	glycogen	75 g	3–5 %	300
muscle	glycogen	250 g	0.5-1.0%	1000
blood and extracellular fluid	glucose	10 g	-	40

Fig. 12.2 Tissue distribution of carbohydrate energy reserves (70 kg adult).

Highly branched dendritic polymer

Fig. 12.3 Close-up of glycogen structure.

- Blood glucose = 10 g, tissues needs easily deplete.
- Glycogen degraded to glucose-1P → G6P → for oxidative metabolism in tissues to synthesize ATP.
- Liver: G6P \rightarrow G + P, by G6P phosphatase.
- Muscle lacks G6P phosphatase.

Structure of Glycogen Properties

Carbohydrate Metabolism

Glycogen metabolism Anabolism vs. Catabolism

Carbohydrate Metabolism Comparisor

Different enzymes

- Glycogenesis
- **Glucose** → glycogen
 - 5 steps
 - 1. Glucokinase
 - 2. Phosphogluco-mutase
 - 3. UDP-Glc PPase
 - 4. Glycogen synthase
 - 5. Branching
- Glycogenolysis
- ■Glycogen → glucose
 - 4 steps
 - 1. Glycogen phosphorylase
 - 2. transglycosylase
 - 3. transglycosylase
 - 4. G6Pase

Regulatory enzyme

Rate-limiting enzyme

Fig. 12.4 Glycogenesis (L)
Glycogenolysis (R)

Carbohydrate Metabolism In: Liver, Muscle, Adipose tissues

Priority: favor synthesis of glycogen first: save first!

- Portal blood: delivers glucose-rich blood to liver during/shortly after a meal.
- Liver rich in GLUT-2: high capacity, low affinity (k_m >10 mM), high glucose flux.
 - Glucokinase (GK): gene induced by continuous glc-rich diet.
 - GK $K_m \sim 5-7$ mM: activity \uparrow when portal blood [Glc] \uparrow above 5 mM.
 - GK not G6P inhibited: thus G6P pushed into all pathways glycolysis, PMP, and glycogenesis (muscle uses lipid oxidative metabolism for ATP).
- Fate of excess glucose
 - In Liver: goes to
 - glycogenesis reserve: for maintaining post absorptive blood [glc].
 - glycolysis: after glycogen reserve is full.
 - energy/ATP synthesis and triglycerides: FAS and TGs exported to adipose tissue for storage.
 - ■In muscle: glucose → stored in glycogen; glycolytic pyruvate formed.
 - In adipose: glucose → DHAP → glycerol → TGs
 - In RBC: glucose → pyruvate → lactate; → NADPH (protect from ROS)

Fate of diet fuels Glucose is central metabolite

Carbohydrate Metabolism Overview of Topics

Hormonal control Glycogenolysis

Carbohydrate Metabolism In Liver Comparison

Glucagon, Epinephrine, Cortisol, Insulin

	THE PARTY OF THE PARTY		
Hormone	Source	Initiator	Effect on glycogenolysis
glucagon	pancreatic α-cells	hypoglycemia	rapid activation
epinephrine	adrenal medulla	stress, hypoglycemia	rapid activation
cortisol	adrenal cortex	stress	chronic activation
insulin	pancreatic β-cells	hyperglycemia	inactivation

Fig. 12.5 Hormones involved in control of glycogenolysis.

- Glycogenolysis: response to low blood [glc] from:
 - Post absorptive utilization.
 - Response to stress.
- 3 hormones activation mode:
 - Glucagon—3.5 kd peptide, from α -cells of endocrine pancreas; main function: activate hepatic glycogenolysis to maintain normoglycemia.
 - Epinephrine—tyrosine derivative, a catecholamine from adrenal medulla activates glycogenolysis in response to acute stress.
 - Cortisol—adrenocortical steroid varies diurnally in plasma, but may be chronically elevated under continuously stressful conditions.

Carbohydrate Metabolism

Hormonal Regulation of Glycogenolysis

Glucagon, epinephrine (adrenalin), cortisol, insulin

- Glucagon 3500 MW protein (29-aa): secreted by α -cells of endocrine pancreas, activates glycogenolysis to maintain normal glycemia, when blood [glucose] becomes <u>hypoglycemic</u>.
- Glucagon t/2 ~ 5 minutes. (removal from blood by receptor binding, renal filtration, proteolytic inactivation in liver.)
- Elevated blood [glucagon]: between meals; chronically elevated during fasting or low-carbohydrate diet.
- Decreased blood [glucagon]: decreases during and soon after a meal ([glucose] is very high).

Carbohydrate Metabolism Glycogenolysis Activation

Glycogenolysis is activated in response to stress

- Physiologic -- in response to increased blood glucose utilization during prolonged exercise.
- Pathologic -- as a result of blood loss.
- Psychological -- in response to acute or chronic threats.
- Acute stress (regardless of source): activates glycogenolysis through the action of catecholamine hormone, epinephrine (released by the adrenal medula).
- During prolonged exercise: both glucagon and epinephrine contribute to stimulation of glycogenolysis.

Insulin Hormonal regulation

Carbohydrate Metabolism

Inhibition of Glycogenolysis

Antagonist of glucagon, epinephrine (adrenalin), cortisol

- Insulin secreted by pancreas β -cells when blood [glucose] is high.
- Synthesized as single peptide chain zymogen: proinsulin.
- In secretory granules, selective proteolysis releases an internal peptide and a 2-chained (via 2 -S–S-) insulin hormone.
- Insulin elicits uptake and intracellular use or storage of glucose, an anabolic hormone.
- Hyperglycemia results in elevated blood [insulin] associated with fed state.
- Hyperinsulinism associated with "insulin resistance" and if chronic can lead to diabetes type-2 and related pathologies.

Glycogen Signal Transduction

Carbohydrate Metabolism

Regulation Mechanism

Fig 12.6 Mobilization of liver glycogen by glucagon.

- 1. Glucagon binds hepatic membrane receptor: activates cascade reactions.
- 2. G-protein-GDP in resting state: releases GDP, α -subunit binds GTP.
- 3. G-protein-GTP: conformation change, releases α -subunit:GTP complex.
- 4. α -GTP binds to adenylate cyclase (AC).
- 5. AC converts ATP \rightarrow cAMP (+PP; \rightarrow 2 P).
- 6. cAMP binds regulatory subunit of *protein kinase A*: active catalytic subunit released = *PKA*.
- 7. PKA phosphorylates <u>3-enzymes</u>: uses ATP
 - Inhibitor $1 \rightarrow \text{inhibitor-1 (+P)}$ ACT.
 - phosphorylase kinase $b \rightarrow PKa$ (+P) ACT.
 - **glycogen synthase** $a \rightarrow b$ (+P) INACT.

Glycogen **Signal Transduction**

Carbohydrate Metabolism

- PKA phosphorylates 3-enzymes: uses ATP
 - Inhibitor $1 \rightarrow \text{inhibitor-1 (+P)}$ ACT.
 - Phosphorylase Kinase $b \rightarrow PK a (+P)$ ACT.
 - Glycogen Synthase $a \rightarrow GS b$ (+P) INACT.

Phosphorylase kinase a: uses ATP Glycogen Phosphorylase $b \rightarrow GP$ a (+P)

- 7. Glycogen Phosphorylase a: glycogenolysis releases G₁P
- 8. Inhibitor 1-P keeps phospho-protein phosphatase (PPP) inactive: glycogen degradation continues.

Glycogen

Carbohydrate Metabolism

Reciprocal Synthesis and Degradation

Regulation Mechanism

Phosphorylation-Dephosphorylation

PPP = <u>P</u>rotein <u>P</u>hos<u>p</u>hatase

Balancing Pathway Activities Avoiding futile cycles

Carbohydrate Metabolism Inhibiting glucose

Glycogenolysis floods system with G1P, G6P, and glucose

- Prandial glucose used up, glycemia falls into hypoglycemia.
- Glucagon's enzyme cascade amplification turns on liver glycogenolysis balanced inhibition of glycogenesis. Also produces inhibition of ...
 - Protein synthesis uses considerable ATP and GTP
 - Cholesterol synthesis uses ATP
 - Fatty acid (FA) synthesis uses ATP to activate acetyl CoA (malonyl CoA)
 - Triglyceride (TGs) synthesis from glycolytic DHAP derived from glucose
 - Glucose synthesis (gluconeogenesis) uses GTP
 - Glucose utilization (glycolysis) uses ATP
- Key enzymes <u>phosphorylated</u> in opposing pathways, avoids futile cycles.
- Glucagon shifts liver metabolism to keep blood [glc] glycemic to maintain vital body functions (see Ch 20).

Termination of glucagon response Carbohydrate Metabolism Must be rapid Hepatic mechanisms

Fig. 12.7 Mechanisms of termination of hormonal response to glucagon.

- Rapid, redundant shutdown mechanisms: accompany blood [glucagon] ↓. Enzyme cascade for amplifying glycogenolysis activation is via dephosphorylaton.
- **1.** $G\alpha$ -GTP \rightarrow $G\alpha$ -GDP: by phosphodiesterase
- 2. Phosphodiesterase: cAMP → AMP
- 3. $[cAMP] \downarrow$, R-cAMP dissociates
- 4. $2R + 2C \rightarrow R_2C_2$: adenylate cyclase inactive again.
- 5. PhosphoProtein Phosphatase (PPP): removes-P;
 - all enz-P \rightarrow enz + P; glycogenolysis stops.
 - Inhibitor 1, increases PPP activity.
- Glycogenolysis stops.
- Decreased blood [glucagon] accompanies rise in blood [glucose] ↑.

Glycogen-storage Diseases Inherited Metabolic Diseases

Carbohydrate Metabolism Inborn errors of Metabolism

Six rare genetic diseases affect glycogen synthesis at different enzyme deficiency steps in the pathway.

Glycogen-storage diseases				
Туре	Name	Enzyme deficiency	Structural or clinical consequences	
I	von Gierke's	G-6-Pase	severe postabsorptive hypoglycemia, lactic acidemia, hypertipidemia	
п	Pompe's	lysosomal cx-glucosidase	glycogen granules in lysosomes	
Ш	Cori's	debranching enzyme	altered glycogen structure, hypoglycemia	
IV	Andersen's	branching enzyme	altered glycogen structure	
v	McArdle's	muscle phosphorylase	excess muscle glycogen deposition, exercise-induced cramps and fatigue	
VI	Hers'	liver phosphorylase	hypoglycemia, not as severe as Type 1	

Fig. 12.8 Major classes of glycogen-storage diseases.

Carbohydrate Metabolism Activation of Glycogenolysis

Glucagon, Epinephrine, Cortisol, Insulin

- <u>Epinephrine</u> (Adrenaline) and precursor (norepinephrine also hormonally active), derived from tyrosine. Adrenal gland cells release when neural signals trigger the fightor-flight response; many diverse physiological effects follow.
- <u>Epinephrine</u> stimulates release of G1P from glycogen; produces elevated intracellular [G6P]. Glycolysis increases in muscle; liver releases glucose into the bloodstream.

Epinephrine Mobilizing hepatic glycogen

Carbohydrate Metabolism Second Messengers

 $\begin{array}{c} \text{Fig. 12.9 Glycogenolysis via} \\ \alpha\text{-adrenergic receptor} \end{array}$

- Epinephrine binds to α and β -adrenergic receptors.
- Two pathways stimulated.
- β-receptor: similar to glucagon mechanism. G-proteins, cAMP.
 - Epinephrine response: augments glucagon's during severe hypoglycemia: rapid heartbeat, sweating, tremors and anxiety.
- α-receptor: **G-proteins**, active membrane isozyme of **phospholipase C** (PLC): specific for cleavage of membrane phospholipid (PL), and PIP₂.
- $PIP_2 \rightarrow DAG + IP_3$, 2^{nd} messengers.
- DAG activates PKC (like PKA).
- IP₃ promotes Ca²⁺ into cytosol.
- Ca²⁺ binds calmodulin: activates phosphorylase kinase, leads to activation of glycogen phosphorylase: glucose released to blood.

Protein kinase A in Muscle During Exercise

Carbohydrate Metabolism Activating Glycogenolysis

Fig 12.10 Regulation of PKA in muscle.

Muscle lacks glucagon receptor and *G6Phosphatase* enzyme.

- Muscle reacts to epinephrine not glucagon.
- β-adrenergic receptor (cAMP) activates glycogenolysis for:
 - Fight or flight
 - Prolonged exercise
- 2 hormone independent modes:
 - Influx of Ca²⁺activates phosphorylase kinase via Ca²⁺ –calmodulin complex.
 - AMP activates phosphorylase directly
- 2 ADP \longleftrightarrow ATP + AMP; [AMP] \uparrow
- AMP activates phosphorylase.

Regulatory effects by Insulin Receptor dimerization

Carbohydrate Metabolism Glycogenesis

Fig 12.11 Regulatory effects of insulin on hepatic and muscle carbo metab.

Insulin's 2 main functions:

- lowers blood glucose by reversing the effect of glucagon's phosphorylation of enzymes and proteins.
- Stimulates gene expression of carbohydrate metabolism enzymes.

Gluconeogenesis (GNG) Glucose from non carbohydrates

Carbohydrate Metabolism Cytosol-Mitochondrion

3-Sources: Lactate, amino acids, glycerol

- Gluconeogenesis: essential during fasting and starvation, when hepatic glycogen depleted, to maintain blood glucose.
- Energy and carbon source required: oxidation of FA released from adipose tissue provides ATP; carbons from 3-sources.
- Lactate from RBC and active muscle.
- Large muscle mass: major source of glucogenic amino acids; transamination.
- Glycerol from TGs: DHAP via glycerol-3P.
- **3 glycolytic irreversible reactions: PK,** PFK-1, GK bypassed by phosphatases: FBPase, and G6Pase after PEPCKase
- **1,3BPG** \leftrightarrows **3PG** is reversible, \triangle **G** similar.
- Lactate cycle: Cori cycle (ch 20). Muscle lactate and pyr → liver-GNG → glc, to muscle-glycolysis →lactate
- Glucose-alanine cycle: [muscle: glc \rightarrow pyr \rightarrow ala] \rightarrow [liver: \rightarrow GNG \rightarrow glc] \rightarrow [muscle: glc \rightarrow pyr \rightarrow ala]...

Regulating gluconeogenesis Hormonal mechanisms

Carbohydrate Metabolism Glycolysis vs. Gluconeogenesis

Fig. 12.13 Gluconeogenesis regulated by heptic [F26BP] and [acetyl CoA]

Control: liver PFK1 and F1,6BPase

- Gluconeogenesis vs. glycolysis: avoid a futile cycle; active GNG—inhibit glycolysis Enz-P or inactive GNG—active glycolysis. Enz
- **F26BP:** allosteric (+) regulator of *F16BP*. Made by:
- **F6P** \rightarrow **F26BP**; enhances glycolysis.
- F26BPase: F6P ← F26BP; enhances GNG.
- PFK2/F26BPase: a bifunctional, with 'P' switch:
- PFK2/F26BPase

 □ PFK2/F26BPase-P
- **F6P** \rightarrow **F16BP**; F26BP \uparrow Rx rate!
- **F16BPase: F6P** ← **F16BP;** F26BP inhibits **GNG**!
- [acetyl CoA \uparrow]: slows TCA; act. **PC** [OAA \uparrow] \rightarrow Glc
- Glucagon: promotes phosphorylation (PK, inact.)
- Insulin: promotes **de**-phosphorylation (**PK** act.)
- During fasting: glucagon \uparrow , PK-P inact, GNG \uparrow , EM \downarrow
- Eat Carbo meal: insulin \uparrow , *PK* act, GNG \downarrow , EM \uparrow

Fructose and galactose Sugar Interconversions

Carbohydrate Metabolism Other sugars

ketose aldose aldose Exclusively in liver epimers $\alpha\text{-D-Glucose}$ α -D-Galactose $\alpha\text{-D-Fructose}$ gluconeogenesis Triose-P glycolysis pyruvate

Carbohydrate Metabolism Gluconeogenesis

General features of hormone action

tissue specificity, determined by receptor distribution

multistep, cascade amplification

intracellular second messengers

coordinate counter-regulation of opposing pathways

augmentation and/or opposition by other hormones

multiple mechanisms of termination of response

Fig. 12.14 Features of hormone action. Multihormonal regulation of gluconeogenesis illustrates fundamental principles of hormone action

Glycogen Metabolism Introduction

- Red cells and the brain Have an absolute requirement for blood glucose for their energy metabolism.
- These cells consume about 80% of the glucose (200 g, 1.1 mol, ca. 1500 kcal) consumed per day by a 70 kg human, in good health.
- Blood and extra cellular fluid volume contains about 10 g glucose, which must be replenished constantly.
- Assumes a blood volume = 7 L, hematocrit = 45%, and no other distribution system operates.
- Normally, blood [glucose] range is between 4 6.5 mM
 (about 80 120 mg/dL)

Gluconeogenesis

Glycogen Metabolism A Introduction

backup system – makes new glucose

- Liver can synthesize glucose from non carbohydrate precursors.
- Amino acids supply carbon skeletons, as does glycerol.
- During starvation*, liver uses degraded muscle protein as the primary precursor of glucose; also lactate (from glycolysis) and glycerol (from fat).
- Fatty acids from triacylglycerides (TAGs) mobilzed (from adipose tissue**) provide the energy for gluconeogenesis.

^{*} Meta bolically may begin about 12 hours after the last meal.

^{**} During w ell-fed states, excess glucose is converted to triacylglycerides (TGs) in adipose cells.

Carbohydrate Metabolism Crossing the plasma membrane

GLUT-2 transporter – getting GLUCOSE in and out of cell

- A high capacity GLUT-2 transporter (low-affinity, km >10 mM) allows glucose free entry into and exit from liver cells across the plasma membrane.
- Liver cells have a large number of GLUT-2, so high [glucose] coming from the portal blood can easily enter the cytoplasm.

Carbohydrate Metabolism Preparing G-6-P

Keeping glucose in the cell – investing for metabolism

- Glucokinase (GK) specifically phosphorylates glucose to glucose-6phosphate (G6P) trapping glucose inside cell. Liver has copious amounts of GK.
- GK gene is inducible (more GK made) when a high carbohydrate diet is continued.
- Km_{GK} ~ 5—7 mM, GK becomes more active when portal blood [glucose] exceeds 5 mM (100 mg %).
- **G6P is not a product inhibitor of GK!** (G6P inhibits hexokinase)

Pathway options for G6P In liver

Carbohydrate Metabolism Pathways in the cytosol

What fates await G6P?

After a carbohydrate meal, G6P floods the cell via GK G6P forced into several major pathways:

- Glycogenesis yields highly branched, dense glucose polymer. After glycogen is replenished, then ...
- Glycolysis oxidizes excess G6P to pyruvate (and lactate) for energy production and triglyceride (TAG) synthesis for export to adipose cells...and
- Pentose phosphate pathway yields NADPH (and ribose and other sugars) for fatty acid synthesis (there goes the waistline!)

Carbohydrate Metabolism Polymerization Glycogenesis pathway

UDP-Glucose adds glucose to glycogen via Glycogen Synthase

Glycogenin

Carbohydrate Metabolism Glycogenesis

{Octamer of Glucose—glycogenin protein} primer

- Glycogen Synthase requires glycogen primer eight α -1,4-linked glucose residues (at least).
- Primer = Glucose₈-Tyr_{C1}-Glycogenin (*Mr* 37,000 protein).
- Glycosyltransferase adds C_1 of Glu_1 -ppU to a tyrosyl residue of Glycogenin; 7 UDP-Glu yield 8-mer $Glucose_8$ -Glycogenin protein primer.
- Glycogen Synthase adds glu of UDP-glu to non reducing C_4 -OH of Glucose-Glycogenin synthesizing a glycogen $_{50.000}$ polymer.
- amylo-(1,4 to 1,6)-transglycolase creates the branches; transfers 6-mer to the C_6 -OH so 4-residues separate branches formed by α -1,6-acetal linkage.
- All the enzymes required are associated with the glycogen for rapid synthesis of glycogen

Branching Glycogen α -1,6 acetal linkage

Carbohydrate Metabolism Glycogenesis pathway

A principle?

Regulate a pathway after a branch branch*

Step 3, Glycogen synthase is regulated, not 1 or 2

^{*} Recall: Does the regulated, committed step of glycolysis (F1,6BP) follow this principle?

Polysaccharide Phosphorylases

In Liver

Carbohydrate Metabolism Glycogenolysis

Using phosphate to cleave C—O bonds: phosphorolysis

Glycogen Phosphorylase Liver vs. Muscle

Carbohydrate Metabolism Glycogenolysis Pathway

Fate of glycogen → glucose

