Drug Discovery and Development

How are drugs discovered and developed?

Sources of drugs

```
-Animal - insulin (pig, cow)
- growth hormone (man)

Plant - digitalis (digitalis purpurea-foxglove)
- morphine (papaver somniferum)

Inorganic - lithium

Synthetic - chemical (propranolol)
biological (penicillin)
biotechnology (human insulin)
```

How a new drug development proceeds?

- Idea or Hypothesis
- Design and synthesis of substances
- Studies on tissues and whole animals (preclinical studies)
- Studies in man (clinical studies)
- Grant of an official license to make therapeutic claims and to sell
- Post-licensing (marketing)studies of safety and comparisons with other medicines.

Drug Discovery

General plan:

For a New Chemical Entity (NCE)

- More than 10 years
- More than \$500 million
- More than 10000 tested compounds
- For one drug!

Basic Steps

- Choose a disease
- Choose a drug target
- Do a "bioassay"
 bioassay = A test used to determine biological activity.
- Find a "lead compound"
 "lead compound" = structure that has some activity against the chosen target, but not yet good enough to be the drug itself.
- If not known, determine the structure of the "lead compound"
- Synthesize analogs of the lead
- Identify Structure-Activity-Relationships (SAR's)

Choosing a Disease

- Pharmaceutical companies must make a profit to exist
- Pharmaceutical companies will, therefore, avoid products with too small a market (i.e. a disease which only affects a small subset of the population)

Choosing a Disease

- Pharmaceutical companies will also avoid products that would be consumed by individuals of lower economic status (i.e. a disease which only affects third world countries)
- Most research is carried out on diseases which afflict "first world" countries: (e.g. cancer, cardiovascular diseases, depression, diabetes, flu, migraine, obesity).

Choosing the Bioassay

In vitro testing

- Has advantages in terms of speed and requires relatively small amounts of compound.
- Speed may be increased to the point where it is possible to analyze several hundred compounds in a single day (high throughput screening).
- Results may not translate to living animals

In vivo tests

- More expensive
- May cause suffering to animals
- Results may be clouded by interference with other biological systems

TECHNIQUES OF DISCOVERY

- MOLECULAR MODELLING AIDED BY THREE DIMENTIONAL COMPUTER GRAPHICS;
- ALLOWS THE DESIGN OF STRUCTURES BASED ON NEW AND KNOWN MOLECULES TO ENHANCE THEIR DESIRED & TO ELIMINATE THEIR UNDESIRED PROPERTIES TO CREATE HIGHLY SELECTIVE TARGETED COMPOUNDS.

- COMBINATORIAL CHEMISTRY —RANDOM MIXING AND MATCHING OF LARGE NUMBERS OF CHEMICAL BUILDING BLOCKS TO PRODUCE LIBRARIES OF ALL POSSIBLE COMBINATIONS.
- GENERATES BILLIONS OF COMPOUNDS, SCREENED BY HIGH- THROUGHPUT SCREENING(THOUSANDS A DAY). IF POSITIVE RESPONSE, TRADITIONAL LABORATORY METHODS.
- **BIOTECHNOLOGY** PROTEINS AS DRUGS, USE OF RECOMBINANT DNA TECHNOLOGY / GENETIC ENGINEERING TO CLONE AND EXPRESS HUMAN GENES.

Preclinical Studies in animals

- Pharmacodynamics: To explore actions relevant to the proposed therapeutic use
- Pharmacokinetics: how the drug is distributed in and disposed of by the body
- Toxicology: whether and how drug causes injury (in vitro tests and intact animals)
- -- single-dose studies acute toxicity
- -- repeated dose studies sub-acute
 - chronic or long term toxicity
- --- Done in 2 species rodent and non-rodent
- --- Clearance from Institutional Animal Ethic Committee required

Special toxicity study

- Carcinogenecity
- Teratogenecity
- Mutagenecity
- Local toxicity –dermal, ocular, inhalational, vaginal & rectal
- Effect on reproductive performance

RRR

Reducing animal usage

- REPLACEMENT: use non-animal tests if possible (cheaper, less trouble, less variable but not possible for everything at this time)
- REDUCTION: get the statistics right, don't replicate work unnecessarily, don't over-breed
- REFINEMENT: reduce suffering and severity of procedure, pay attention to housing, stress, husbandry and rich environments, proper analgesia and pre- and post- operative care.
- According to Good Laboratory Practice (GCP)

Rational Introduction Of a new drug to man

 When studies in animals predict that a new molecule may be a useful medicine i.e. effective and safe in relation to its benefits, then time has come to put it to test in man.

Clinical testing(trials)

- Phase I Human Pharmacology (Healthy volunteers – 20-50 subjects)
- Phase II Therapeutic Exploration (patients 50- 400)
- Phase III Therapeutic Confirmation (large scale multi-centre; 250-1000)
- Phase IV Therapeutic Use (postregistration monitoring)
 {Phase 0, Microdosing}

Clinical Trials

- Phase I: Drug is tested on healthy volunteers,
- P/K , P/D (biological effects) ,tolerability, safety, efficacy.
- To determine safe clinical dose range.
- If drug is expected to have significant toxicity, volunteers with that disease are taken rather than healthy volunteers, (anti-cancer, drugs for AIDS)
- These trials are non-blind or open-label; both the investigator and the subject know what is being given.

Phase II:

- Drug is tested on small group of patients with the target disease.
- P/K, P/D, dose range, safety and efficacy may involve comparison with a control.

- Phase III: Drug is tested on much larger group of patients and compared with existing treatments and with an inert control. These are randomised double-blind trials.
- Takes 5-6 years for completion.
- Results analysed statistically in the end.

Phase IV :

- Drug is placed on the market and patients are monitored for side effects
- Post –marketing surveillance for safety, efficacy & pharmaco-economic studies.

Drug Regulation

- Food & Drug Administration (FDA)
- It is the administrative body that oversees the drug evaluation process in USA and grants approval for marketing of new drug products.
- IND Investigational New Drug (if judged ready to be studied in human)
- NDA New Drug Application
- If Phase 3 results meet expectations, application is made for permission to market the new agent)
- Filing of a patent

Ethics Of research in Human

- Ethical Principles of research –
- Autonomy Right to self determination, informed consent
- Beneficence Desire to help patients
- Non-maleficence No harm
- Justice should not be continued if no benefit

Drug discovery/development process

Discovery=find new active structure : Development=convert it to a useful dr