Bacillus Anthracis

HISTORICAL IMPORTANCE

- First pathogenic bacteria to be seen under microscope (Pollender 1849)
- First demonstration of blood borne transmission (Davaine 1850)
- The first bacterium shown to be the cause of a disease- <u>Koch's</u> <u>Postulate</u>
- In 1877, Robert Koch grew the organism in pure culture, demonstrated its ability to form endospores
- First effective vaccine (Pasteur 1881)

Robert Koch

Louis Pasteur

AGENT

- Bacillus anthracis
- Gram positive rods
 - 3-10 micron by 1-1.6 micron
- Aerobic bacilli forming heat-resistant spores
- Non acid fast, Non-motile
- Capsule (poly d-glutamate-protein)
 - (10-25% CO₂ bicarbonate, serum albumin charcoal, starch

Spores

- Aerobic bacilli forming heat-resistant spores
 - Formed in culture/soil
 - survive in soil for decades
 - Never formed in animal body
 - Occurs under un-favourable conditions
 - Encouraged by DW, 2% NaCl, oxalated agar
 - Inhibited by calcium chloride
 - central or subterminal, oval
 - Of same width as the bacillary body-no bulging
 - resistant to drying/UV/gamma rays/heat

Bacillus anthracis. Gram stain. The cells have characteristic squared ends. The endospores are ellipsoidal shaped and located centrally in the sporangium. The spores are highly refractile to light and resistant to staining.

AGENT (contd...)

- Cultural characteristics
 - 35-37° C
 - Optimum for sporulation- 25-30°C
 - Good growth occurs on ordinary media
 - grey white (sheep blood agar)
 - Irregular, non-haemolytic
 - Tenacious, rough

LPF: Medusa head colony

• Edge of a colony is composed of long, interlacing chains of bacilli resembling locks of matted hair

PLET medium

SPORES SURVIVE FOR MANY YEARS (DRY STATE AND SOIL)

- DUCKERING: 2% Formaldehyde kills spores at 30-40°C for 20 mins for disinfection of wool and as 0.25% at 60°C for 6 hrs for animal hair and bristles
- 4% KMnO₄ kills spores in 15 mins

HOST

- In nature, primarily an infection of :
 - herbivores :cattle, horse, goat, sheep, from soil they graze,
 - wild animals-carnivores
- Farmers
- Animal product handlers :meat, hide, wool, hair, bones etc.
- Healthcare workers
- Lab personel
- ? Common man : threat of bioterrorism

ENVIRONMENT

- Favorable factors for spore formation & survival
 - abundant rainfall following a period of drought
 - soil pH >6, abundant organic matter
 - improper disposal of animal carcasses (ideally incineration or rendering needs to be done)
- Human-animal interaction
- Asymmetric warfare

VIRULENCE FACTORS

Anthrax Toxin – Complex of proteins (all the components thermolabile)

- Edema factor (Factor I)
- Protective factor (Factor II)
- Lethal Factor (Factor III)

Protein capsule – Poly D Glutamic acid capsule

- Inhibits phagocytosis (Unencapsulated strains – nonpathogenic)

Anthrax Toxin

Protective antigen: Binds plasma membrane of target cells

Cleaved to 2 fragments (cellular trypsin or proteases)

Larger fragment is attached to cell surface – binding domain for LF & EF

Specific receptor mediated endocytosis of LF & EF

EDEMA FACTOR

 $(Edema\ Factor + Protective\ Ag = Edema\ toxin)$

Calmodulin dependent adenyl cyclase

Increased cellular cAMP —— Edema —— Impaired Neutrophil function

Depletes ATP from Macrophages

LETHAL FACTOR

(Lethal Factor + Protective Ag = Lethal toxin)

Zinc metallo proteases that inactivates protein kinases

Stimulates Macrophages – TNF alpha and IL – 1 beta – Shock & Death

Death due to oxygen depletion, secondary shock, increased vascular permeability, respiratory failure and cardiac failure.

Sudden and unexpected.

Clinically three forms of Human anthrax occur

- A. Cutaneous anthrax-Hide-porters disease
- A. Pulmonary anthrax-Woo-Isorters disease
- B. Intestinal anthrax

Broadly can be classified into

Non Industrial/Agricultural (Through infected animals):

Cutaneous anthrax
Rarely intestinal anthrax

Industrial Anthrax (Through animal products):

Mostly through animal products (wools, hair, hides, bones)
Likely to develop Cutaneous and pulmonary anthrax (inhalation)

Cutaneous Anthrax

- Mainly in professionals (Veterinarian, butcher)
- Spores infect skin- a characteristic gelatinous edema develops at the site (Papule- Vesicle-Malignant Pustule- Necrotic ulcer)
- Hide porter's disease
- IP -1 to 12 days, 2000 cases annually
- 95-99% of all human anthrax occur as cutaneous anthrax
- Mortality 20% untreated, 1% treated (edema/septicaemia)
- 80-90% heal spontaneously (2-6wks)
- 0-20% progressive disease develop septicemia

Cutaneous Anthrax

Pulmonary Anthrax

- Wool sorter's disease
- Most common source of exposure industrial exposure to spores specially tanneries, wool handlers
 - Hemorrhagic pneumonia, Haemorrhagic mediastinitis
 - Progress to septicemia very rapidly
 - Hemorrhagic meningitis –complication
- Acquired through inhalation of spores (Bioterrorism aerosol)
- Present with symptoms of severe respiratory infection(High fever & Chest pain)
- Mortality rate is very high > 95%

- Intentional contamination of mails since 2001
- October 2001 letter associated Anthrax outbreak
- 22 cases
 - 11 Inhalational (5 deaths)
 - 11 Cutaneous (No deaths)
 - Very different distribution compared to naturally occurring disease
- Mortality historically: >95%

Gastrointestinal Anthrax

- Rare –primitive communities who eat carcasses of animals dying of anthrax
- Nausea, anorexia, vomiting, fever
- Progresses to severe abdominal pain and bloody emesis and diarrhea
- Death 2 to 5 days after onset of symptoms
- Very difficult to diagnose

LAB DIAGNOSIS

- ➤ Samples:
 - -Cutaneous:- vesicular fluid on swabs
 - full thickness punch biopsy in 10% buffered formalin
 - -Gastrointestinal:- stool, blood, peritoneal fluid, splenic & node aspirate
 - -Inhalational:- pleural fluid
 - blood/paired sera
 - -Meningeal:- CSF

LAB DIAGNOSIS

- Disposable gloves, aprons, boots, face shields, respirators (autoclaved)
- Indisposable –
 10% formaldehyde
 5% glutaraldehyde
 fumigation
- Aerosol tight rotors
- Biosafety cabinet
- Level 2 / 3 practices

Microscopy

Stains

- Gram stain
- Carcasses 1 or 2 day old
 - Aspirate blood MacFadyean stain for bacilli
 - Direct demonstration by IFA
 - Spore stain

- SBA
- Gelatin stab culture
- Polymyxin lysozyme EDTA thallous acetate (PLET agar)

• **ELISA:** based on anthrax toxin (PA, LF and EF) for routine confirmation of antibodies

- Molecular techniques (Only in the referral laboratories):
 - RFLP
 - PCR Fingerprinting
- Animal Inoculation: Guinea pig and mice inoculation

TREATMENT

- Antibiotics therapy is effective in human cases but rarely succeeds in animals —not started sufficiently early
- Antibiotic treatment is effective in cutaneous anthrax
- Penicillin, tetracyclines, erythromycin and fluoroquinolones are effective
- Inhalation anthrax can be effectively treated with antibiotics administered prior to lymphatic spread or septicemia

Prophylaxis

- Hygiene-
 - improvement of factory environment
 - Proper sterilisation of animal products
 - Carcasses- buried deep in quicklime or cremated to prevent soil contamination
- Immunisation:
- Prevention of anthrax in animals-
 - Original Pasteur's anthrax vaccine
 - Anthrax bacillus attenuated by growth at 42-43°C
- Spore vaccines:
 - Sterne vaccine-avirulent, mutant strain
 - Mazzucchi vaccine-spores of stable Carbazoo strain in 2% saponin

DIAGNOSIS(contd....)

Characteristic

B. cereus and B. anthracis B. thuringiensis

growth requirement for thiamin hemolysis on sheep blood agar glutamyl-polypeptide capsule lysis by gamma phage motility growth on chloralhydrate agar string-of-pearls test