ATYPICAL MYCOBACTERIA

- ✓ Mycobacteria other than tubercle and leprosy bacilli that exists as saprophytes of soil & water .
- cause opportunist disease in man, called atypical, environmental, opportunist, tuberculoid Mycobacteria (MOTT).
- ✓ acid fast & alcohol fast.
- ✓ morphology long & even filamentous.
- √ can grow at 27° C & 37° C.
- ✓ M. xenopi, M. phlei, M. smegmatis grow at 44° C.
- ✓ some are rapid growers, produce visible growth on LJ within one week.

- ✓ some produce bright yellow or orange pigment.
- ✓ resistant to antitubercular drugs , like streptomycin, INH, PAS
- ✓ sensitive to rifampicin.
- √ Niacin negative
- √ neutral red negative.
- ✓ produce enzyme arylsulphatase.
- ✓ non pathogenic for guinea -pig but pathogenic for mouse.

CLASSIFICATION (Runyon, 1959)

✓ on the basis of pigment and rate of growth.

Runyon group	Name	Species
I	Photochromogens	M. kansasii, M. marinum,
II	Scotochromogens	M. scrofulaceum M. gordonae
III	Non-chromogens	M. avium M. intra- cellulare, M. xenopi
IV	Rapid growers	M. cheloni, M. fortuitum

CLASSIFICATION (Runyon, 1959)

Gp	Name	Characteristics
I	Photochromogens	 Colonies develop pigment following exposure to light Growth in more than 7 days on solid media
II	Scotochromogens	 Colonies develop pigment in the dark or light Growth in more than 7 days on solid media
III	Non-chromogens	- Colonies are non pigmented irrespective of exposure to dark or light - Growth in more than 7 days on solid media
IV	Rapid growers	- Colonies appear in less than 7 days on solid media

Photochromogens

- form colorless colonies when incubated in dark
- but when young colonies are exposed to air for 1 hr. and re- incubated for 24-48 hrs., development of bright yellow or orange colour.
- 3 important species M. kansasii,
 M. marinum, M. simiae.

Photochromogens (cont'd)

- √ M. kansasii
 - cause chronic pulmonary disease resembling tuberculosis.
 - commonly isolated from pts. with preexisting lung disease.
 - grows well at 37 ° C on LJ medium
 - reduces nitrate to nitrite.
 - bacilli are elongated & have a beaded appearance.
 - usually sensitive to rifampicin & other anti- tuberculous drugs.

Photochromogenic Mycobacterium kansasii on Middlebrook Agar

Photochromogens (cont'd)

- ✓ M. marinum
 - grows poorly at 37 ° C, but grows better at 33 ° C.
 - causes superficial granulomatous skin disease (swimming pool granuloma).
 - · failure to reduce nitrate to nitrite
 - failure to produce catalase.
- √M. simiae causes pulmonary diseases.

M. marinum

Scotochromogens

- ✓ form pigment in cultures incubated in the dark, though the intensity of colour may increase on exposure to light.
- ✓ M. scrofulaceum causes scrofula (
 cervical lymphadenitis) in children.
 - Bacilli may be short, long or filamentous.
 - resistant to INH & sensitive to cycloserine & ethionamide

Scotochromogens (cont'd)

- ✓ M. gordonae often found in water
 - common contaminant of clinical samples.
 - rare cause of pulmonary disease.
- ✓ M. szulgai
 - it is a scotochromogen when incubated at 37° C & photochromogen at 25° C.
 - it occasionally cause pulmonary disease and bursitis.

Non-chromogens

- √ don't produce pigment even on exposure
 to light.
- ✓ M. intracellulare; Battey bacillus & M. avium causes TB, can grow at 45° C
- ✓ Grouped together as MAC (M. avium complex) or M. avium intracellulare (MAI).
- ✓ MAC-commonest opportunistic infections
- ✓ colonies are smooth, non-pigmented, easily emulsifiable.
- ✓ TB, lymphadenitis & disseminated disease in man.

Mycobacterium aviumintracellulare in Tissue Specimens

Low Magnification

High Magnification

M. aviumintracellulare
Complex

(MAC)

Progression vs.

in AIDS
Patients

CD4 Count

Non-chromogens (cont'd)

- ✓ M. xenopi :is a thermopile, grows well at 45° C.
 - -may case pulmonary lesions
 - most cases reported from South London.
- ✓ M. ulcerans: causative agent of Buruli ulcer.
- grows at 31-34 ° C & not at 37 ° C.
 produces a powerful exotoxin.

Rapid Growers

- ✓ may be photo-, scoto-or non-chromogens.
- ✓ produce visible growth on LJ medium within 2-3 days.
- ✓ M. smegmatis saprophytes
 - rough, white to buff coloured colonies.
 - -since normally present in smegma, so frequent contaminant of urine sample.
 - -are acid fast & not alcohol fast.
 - -not seen in ZN stain if acid alcohol is used as decolorizer.
 - rarely causes skin, pulmonary, soft tissue, bone infections.

Rapid Growers (cont'd)

- ✓ M. chelonae & M. fortuitum.
 - -Both these rapid growers are human pathogens.
 - -Both are coccoid to filamentous in shape.
 - -M. chelonae grows better at 25° C than at 37° C.
 - M. fortuitum reduces nitrate & assimilates iron from ferric ammonium citrate.
 - cause chronic abscess, pulmonary or disseminated disease.

DIAGNOSIS OF NTM

- Clinical signs and symptoms, Chest X ray and Smear cannot differentiate NTM and TB infection
- · Culture is the method to confirm diagnosis
- Disseminated diseases are common in immunocompromised host especially in HIV patients
- Blood culture for mycobacteria is useful for disseminated disease
- * As NTM are present in the environment, so clinical significance of isolates is considered when:
- Recovered from multiple specimens or sites
- Recovered in large quantities
- Recovered from a sterile site such as blood

SPECIMENS

- * Should be directly from the lesion or organ concerned
- Avoid potential sources of contamination especially tap water
- Submit specimens without fixatives
- * Collect samples in sterile, leak proof containers
- Limit antibiotic use during diagnostic evaluation of NTM disease

SPECIMEN PROCESSING

- * DIGESTION AND DECONTAMINATION: of specimens from non sterile sites.
- * SMEAR MICROSCOPY

Fluorochrome stain

Ziehl Neelsen staining

CULTIVATION

Most of NTM can grow on ordinary media for mycobacteria

SDA	

SOLID	LIQUID
•EGG BASED: Lowenstein Jensen L-J with iron •AGAR BASED: Middlebrook 7H10 Middlebrook 7H11 Middlebrook biplate	BACTEC 12B medium Middlebrook 7H9 broth Septi-check AFB Mycobacteria Growth Indicator Tube

Few NTM have special growth requirements:

- M. haemophilum requires media enriched with iron containing compounds like ferric ammonium citrate, hemin or hemoglobin
- M. genavense and M. paratuberculosis need media enriched with mycobactin J
- M. ulcerans needs egg yolk supplementation
- Incubation:
- Optimal temperature between 28°C & 37°C
- Exceptions:
- M. haemophilum- 28°C to 30°C
- M. ulcerans- 25°C to 33°C
- M. xenopi, MAC- 45°C

IDENTIFICATION OF ISOLATES

* Phenotypic Characteristics:

Growth Rate

Pigment production

Biochemical tests

- * HPLC
- * Molecular methods
- * Animal pathogenicity- mice

PIGMENT PRODUCTION

- * Three LJ slants inoculated with organism
- * Two slants completely shielded from light with cardboard tube or aluminum foil
- * When growth detected in unshielded tube, growth examined in one shielded tube
- * If colonies not pigmented tube exposed to light (100-W) tungsten bulb for 2 hrs) with cap loosened (maximal oxygenation required for pigmented production)
- * Tube is rewrapped and returned to the incubator. Examine after 24-48 hrs.
- Colonies compared for pigmentation with lightexposed tube to shielded tube not exposed to light

PHENOTYPIC CHARACTERISTICS

PHOTOCHROMOGENS

M. marinum

SCOTOCHROMOGENS

M. szulgai

M. gordonae

M. scrofulaceum

NON PHOTOCHROMOGENS

