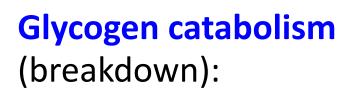
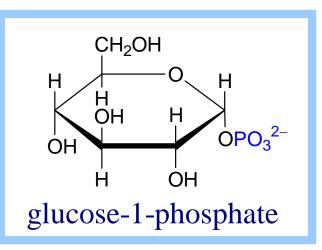

Glycogen Metabolism

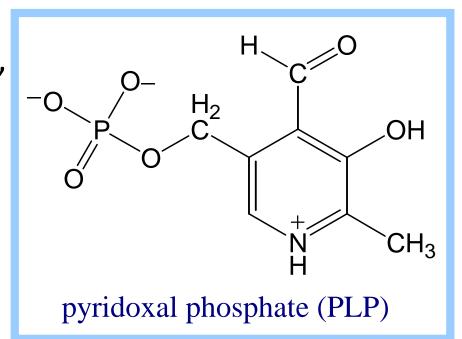


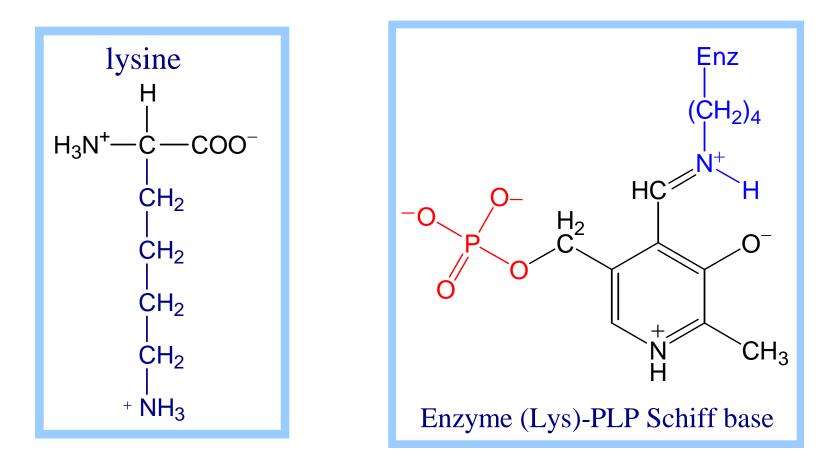

Glycogen is a polymer of **glucose** residues linked by

- $\alpha(1 \rightarrow 4)$ glycosidic bonds, mainly
- $\alpha(1\rightarrow 6)$ glycosidic bonds, at branch points.

Glycogen chains & branches are longer than shown.

Glucose is stored as glycogen predominantly in **liver** and **muscle** cells.

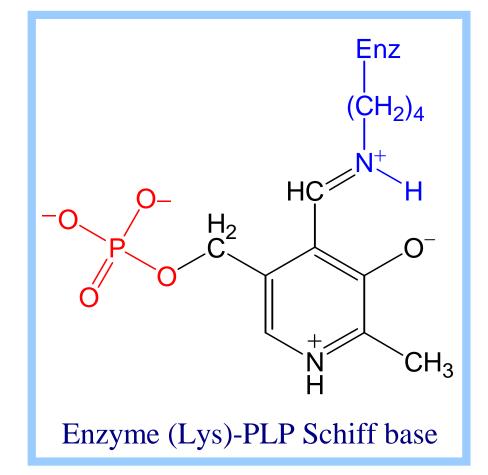



Glycogen Phosphorylase catalyzes phosphorolytic cleavage of the $\alpha(1 \rightarrow 4)$ glycosidic linkages of glycogen, releasing glucose-1-phosphate as reaction product.

glycogen_(n residues) + P_i → glycogen_(n-1 residues) + glucose-1-phosphate This phosphorolysis may be compared to hydrolysis: Hydrolysis: R-O-R' + HOH → R-OH + R'-OH Phosphorolysis: R-O-R' + HO-PO₃²⁻ → R-OH + R'-O-PO₃²⁻

Pyridoxal phosphate (PLP),

a derivative of vitamin B₆, serves as prosthetic group for Glycogen Phosphorylase.

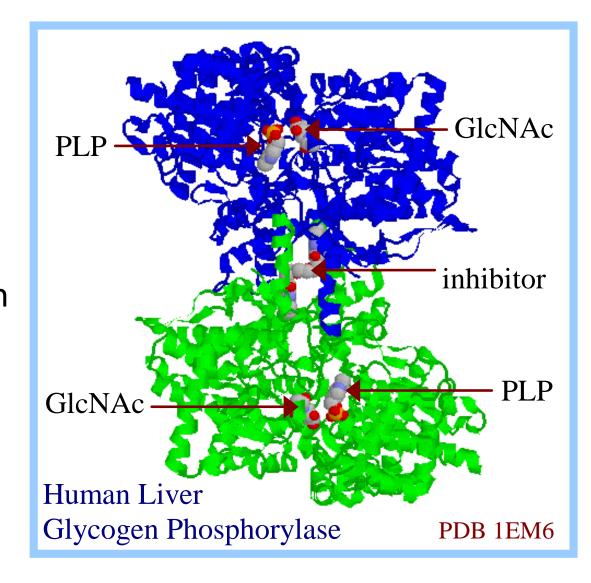


Pyridoxal phosphate (PLP) is held at the active site by a **Schiff base** linkage, formed by reaction of the aldehyde of PLP with the ε -amino group of a lysine residue.

In contrast to its role in other enzymes, the **phosphate** of PLP is involved in acid/base catalysis by Phosphorylase.

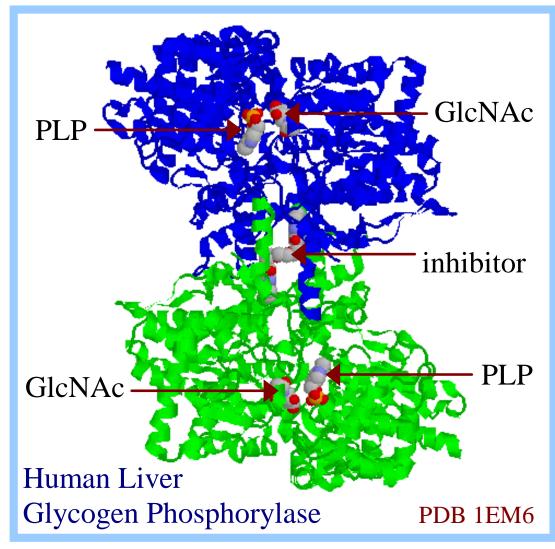
The **P_i substrate** binds between the phosphate of PLP and the glycosidic O linking the terminal glucose residue of the glycogen.

After the phosphate substrate donates H⁺ during cleavage of the glycosidic bond, it receives H⁺ from the phosphate moiety of PLP.


PLP then takes back the H⁺ as the phosphate O attacks C1 of the cleaved glucose to yield glucose-1-phosphate.

Glycogen Phosphorylase:

a **homodimeric** enzyme, subject to allosteric control.

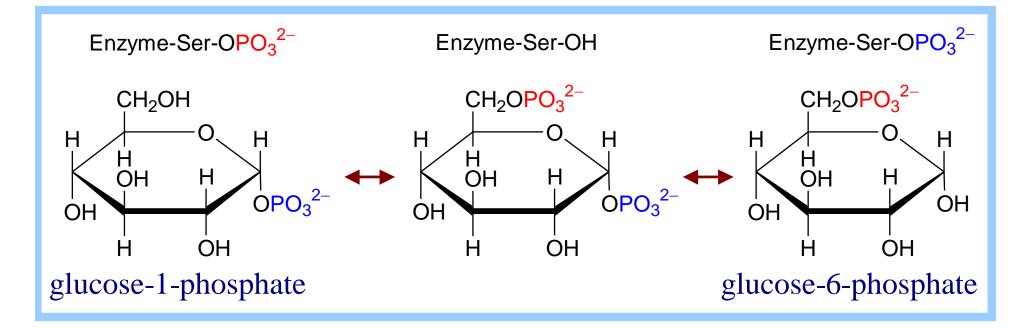

It transitions between "relaxed" (active) & "tense" (inhibited) conformations.

<u>Diagram</u> comparing relaxed and tense conformations.

A **glucose analog**, *N*-acetylglucosamine (GlcNAc), is adjacent to pyridoxal phosphate at the **active site** in the crystal structure shown. A class of drugs developed for treating the hyperglycemia of diabetes (chloroindolecarboxamides), inhibit liver Phosphorylase allosterically.

These **inhibitors** bind at the dimer interface, stabilizing the inactive (tense) conformation.

Question: Why would an inhibitor of Glycogen Phosphorylase be a suitable treatment for diabetes? A **glycogen storage site** on the surface of the Phosphorylase enzyme binds the glycogen particle.

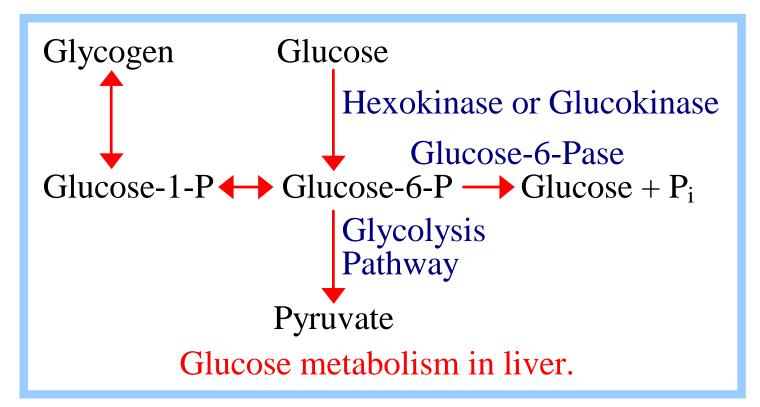

Given the distance between storage & active sites, Phosphorylase can cleave $\alpha(1\rightarrow 4)$ linkages only to within 4 residues of an $\alpha(1\rightarrow 6)$ branch point.

This is called a "limit branch".

Explore the structure of muscle Glycogen Phosphorylase with Chime. **Debranching enzyme** has 2 independent active sites, consisting of residues in different segments of a single polypeptide chain:

- The transferase of the debranching enzyme transfers 3 glucose residues from a 4-residue limit branch to the end of another branch, diminishing the limit branch to a single glucose residue.
- The α(1→6) glucosidase moiety of the debranching enzyme then catalyzes hydrolysis of the α(1→6) linkage, yielding free glucose. This is a minor fraction of glucose released from glycogen.

The major product of glycogen breakdown is **glucose-1-phosphate**, from Phosphorylase activity.

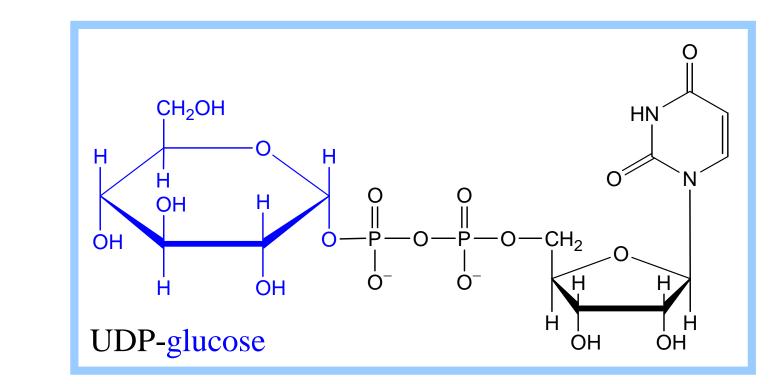


Phosphoglucomutase catalyzes the reversible reaction: glucose-1-phosphate ←→ glucose-6-phosphate

A serine OH at the active site donates & accepts P_i .

The bisphosphate is not released.

Phosphoglycerate Mutase has a similar mechanism, but instead uses His for P_i transfer.

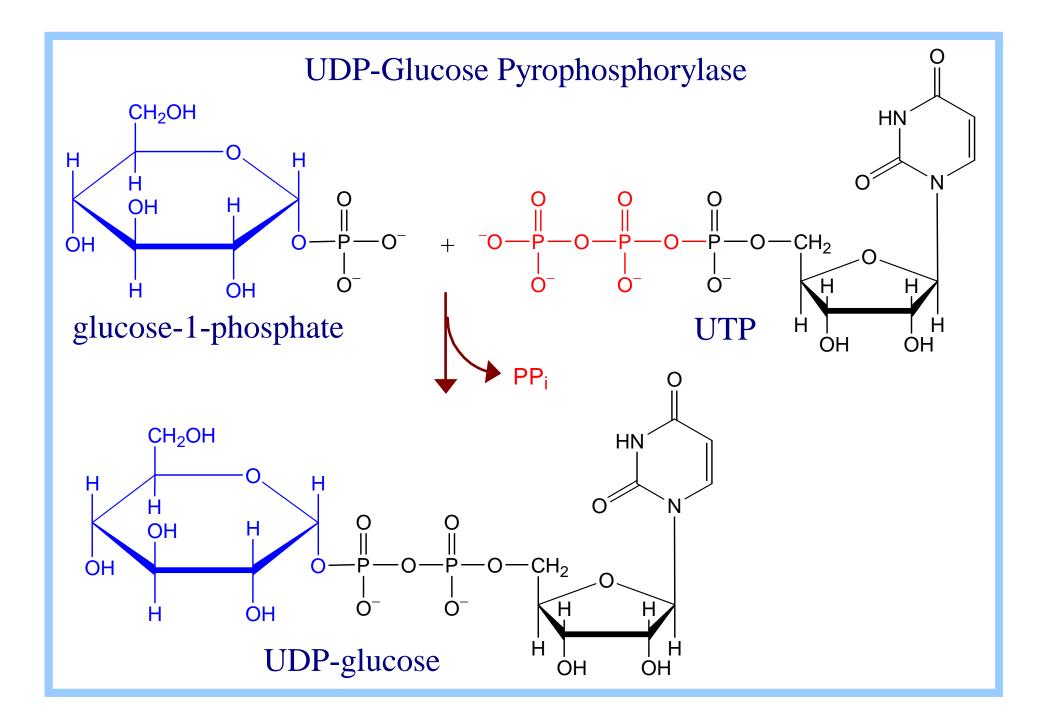


Glucose-6-phosphate may enter Glycolysis or (mainly in liver) be dephosphorylated for release to the blood.

Liver **Glucose-6-phosphatase** catalyzes the following, essential to the liver's role in maintaining blood glucose:

glucose-6-phosphate + $H_2O \rightarrow$ glucose + P_i

Most other tissues lack this enzyme.


Uridine diphosphate glucose (UDP-glucose) is the immediate precursor for **glycogen synthesis**.

As glucose residues are added to glycogen, UDP-glucose is the substrate and UDP is released as a reaction product.

Nucleotide diphosphate sugars are precursors also for synthesis of other complex carbohydrates, including oligosaccharide chains of glycoproteins, etc.

Glycogen

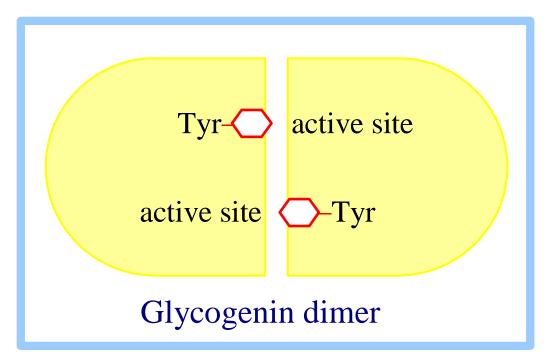
synthesis

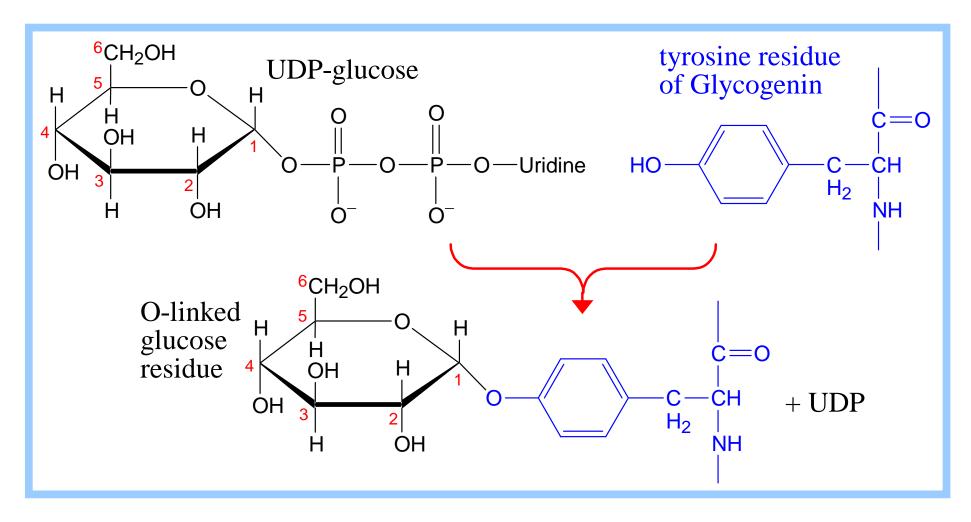
UDP-glucose is formed from glucose-1-phosphate:

- glucose-1-phosphate + UTP \rightarrow UDP-glucose + PP_i
- $PP_i + H_2O \rightarrow 2P_i$

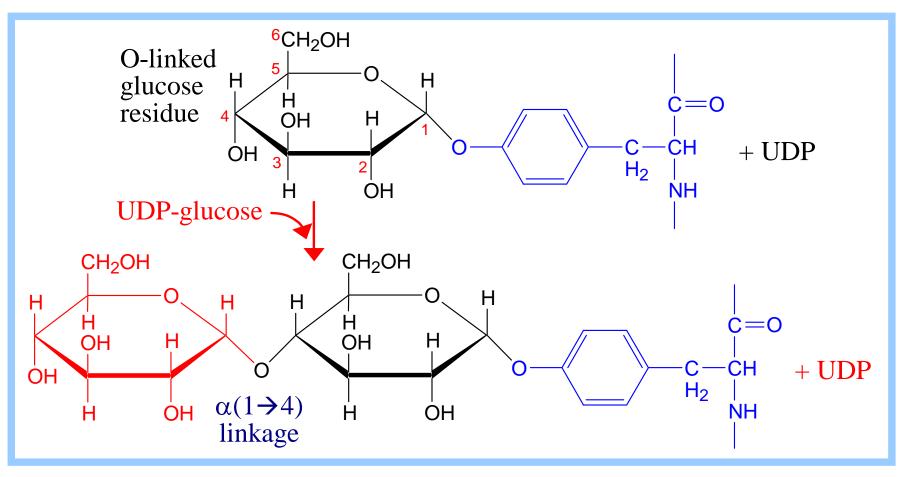
Overall:

◆ glucose-1-phosphate + UTP → UDP-glucose + 2 P_i


Spontaneous hydrolysis of the $\sim P$ bond in PP_i (P $\sim P$) drives the overall reaction.


Cleavage of PP_i is the only energy cost for glycogen synthesis (<u>one</u> ~P bond per glucose residue).

Glycogenin initiates glycogen synthesis.


Glycogenin is an enzyme that catalyzes attachment of a **glucose** molecule to one of its own **tyrosine** residues.

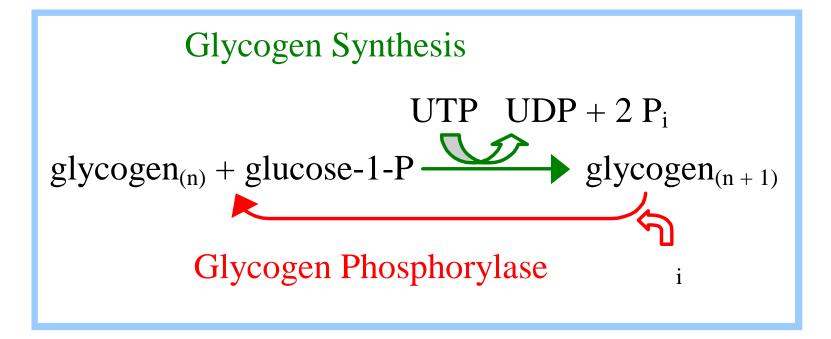
Glycogenin is a **dimer**, and evidence indicates that the 2 copies of the enzyme glucosylate one another.

A **glycosidic bond** is formed between the anomeric C1 of the glucose moiety derived from UDP-glucose and the hydroxyl oxygen of a **tyrosine** side-chain of **Glycogenin**. UDP is released as a product.

Glycogenin then catalyzes glucosylation at C4 of the attached glucose (UDP-glucose again the donor), to yield an O-linked disaccharide with $\alpha(1\rightarrow 4)$ glycosidic linkage.

This is repeated until a short linear glucose polymer with $\alpha(1\rightarrow 4)$ glycosidic linkages is built up on Glycogenin.

Glycogen Synthase then catalyzes **elongation** of glycogen chains initiated by Glycogenin.


Question: Where would you expect to find Glycogenin within a cell?

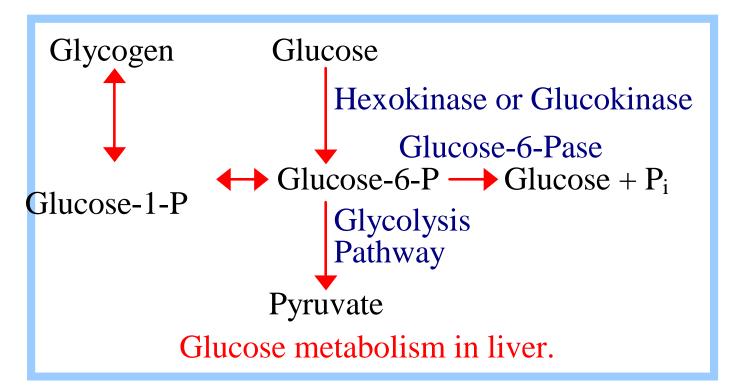
Answer: Most of the Glycogenin is found associated with **glycogen particles** (branched glycogen chains) in the cytoplasm.

Glycogen Synthase catalyzes transfer of the glucose moiety of UDP-glucose to the hydroxyl at C4 of the terminal residue of a glycogen chain to form an $\alpha(1 \rightarrow 4)$ glycosidic linkage:

glycogen_(n residues) + UDP-glucose → glycogen_(n +1 residues) + UDP

A branching enzyme transfers a segment from the end of a glycogen chain to the C6 hydroxyl of a glucose residue of glycogen to yield a branch with an $\alpha(1\rightarrow 6)$ linkage.

Both synthesis & breakdown of glycogen are spontaneous.


If both pathways were active simultaneously in a cell, there would be a "**futile cycle**" with cleavage of **one ~P bond per cycle** (in forming UDP-glucose).

To prevent such a futile cycle, Glycogen Synthase and Glycogen Phosphorylase are **reciprocally regulated**, by allosteric effectors and by phosphorylation.

Glycogen Phosphorylase in **muscle** is subject to allosteric regulation by AMP, ATP, and glucose-6-phosphate.

A separate isozyme of Phosphorylase expressed in liver is less sensitive to these allosteric controls.

- AMP (present significantly when ATP is depleted) activates Phosphorylase, promoting the relaxed conformation.
- ATP & glucose-6-phosphate, which both have binding sites that overlap that of AMP, inhibit Phosphorylase, promoting the tense conformation.
- Thus glycogen breakdown is inhibited when ATP and glucose-6-phosphate are plentiful.

Glycogen Synthase is allosterically **activated** by **glucose-6-P** (opposite of effect on Phosphorylase).

Thus Glycogen Synthase is active when high blood glucose leads to elevated intracellular glucose-6-P.

It is useful to a cell to store glucose as glycogen when the input to Glycolysis (glucose-6-P), and the main product of Glycolysis (ATP), are adequate.

Regulation by covalent modification (phosphorylation):

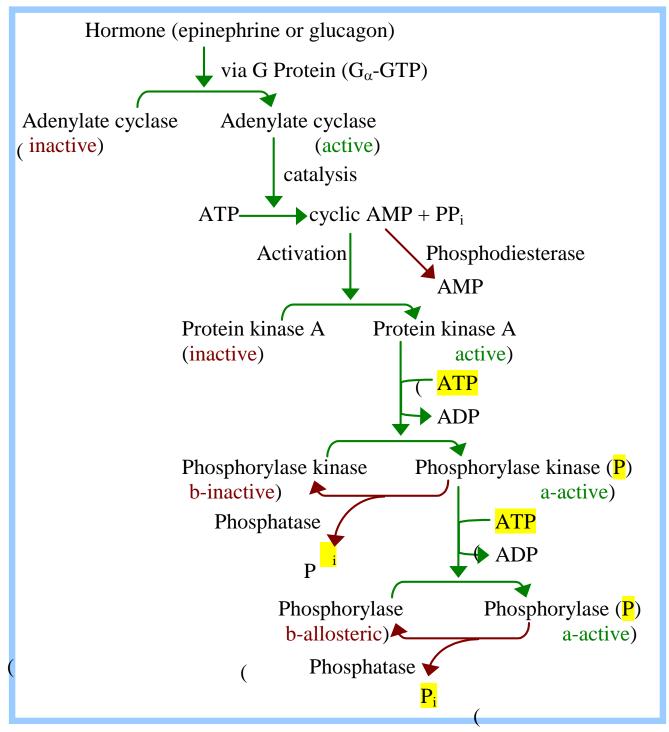
The hormones **glucagon** and **epinephrine** activate G-protein coupled receptors to trigger **cAMP cascades**.

- Both hormones are produced in response to low blood sugar.
- Glucagon, which is synthesized by α-cells of the pancreas, activates cAMP formation in liver.
- Epinephrine activates cAMP formation in muscle.

The cAMP cascade results in **phosphorylation** of a serine hydroxyl of Glycogen Phosphorylase, which promotes transition to the **active** (relaxed) state.

The phosphorylated enzyme is **less sensitive to allosteric inhibitors**.

Thus, even if cellular ATP & glucose-6-phosphate are high, Phosphorylase will be active.

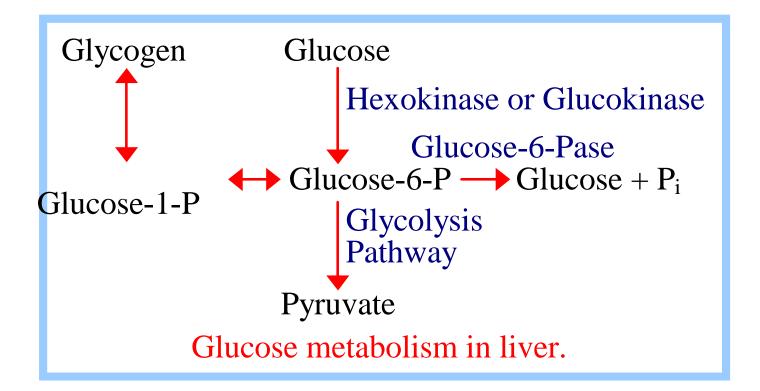

The glucose-1-phosphate produced from glycogen in liver may be converted to free **glucose** for release to the blood.

With this hormone-activated regulation, the needs of the organism take precedence over needs of the cell.

Commonly used terminology:

- "a" is the form of the enzyme that tends to be active, and independent of allosteric regulators (in the case of Glycogen Phosphorylase, when phosphorylated).
- "b" is the form of the enzyme that is dependent on local allosteric controls (in the case of Glycogen Phosphorylase when dephosphorylated).

Signal cascade by which Glycogen Phosphorylase is activated.

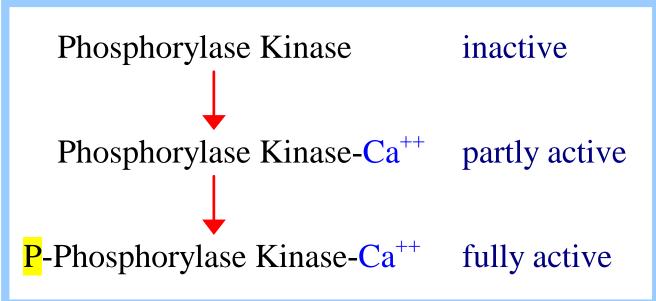

The **cAMP cascade** induced in liver by glucagon or epinephrine has the **opposite effect on glycogen synthesis**.

Glycogen Synthase is phosphorylated by Protein Kinase A as well as by Phosphorylase Kinase.

Phosphorylation of Glycogen Synthase promotes the "**b**" (less active) conformation.

The cAMP cascade thus **inhibits glycogen synthesis**.

Instead of being converted to glycogen, glucose-1-P in liver may be converted to glucose-6-P, and dephosphorylated for release to the blood.

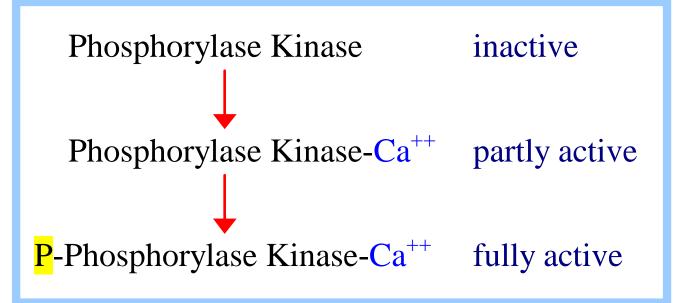

High cytosolic glucose-6-phosphate, which would result when blood glucose is high, turns off the signal with regard to glycogen synthesis.

The conformation of Glycogen Synthase induced by the allosteric activator glucose-6-phosphate is susceptible to dephosphorylation by Protein Phosphatase.

Insulin, produced in response to **high blood glucose**, triggers a separate signal cascade that leads to **activation of Phosphoprotein Phosphatase**.

This phosphatase catalyzes removal of regulatory phosphate residues from Phosphorylase, Phosphorylase Kinase, & Glycogen Synthase enzymes.

Thus **insulin antagonizes** effects of the cAMP cascade induced by **glucagon** & **epinephrine**.



Ca⁺⁺ also regulates glycogen breakdown in **muscle**.

During activation of contraction in skeletal muscle, **Ca**⁺⁺ is released from the sarcoplasmic reticulum to promote actin/myosin interactions.

The released Ca⁺⁺ also activates Phosphorylase Kinase, which in muscle includes calmodulin as its δ subunit.

Phosphorylase Kinase is partly activated by binding of Ca⁺⁺ to this subunit.

Phosphorylation of the enzyme, via a cAMP cascade induced by epinephrine, results in further activation.

These regulatory processes ensure release of phosphorylated glucose from glycogen, for entry into **Glycolysis** to provide **ATP** needed for muscle contraction.

During **extended exercise**, as glycogen stores become depleted, muscle cells rely more on glucose uptake from the blood, and on fatty acid catabolism as a source of ATP. A **genetic defect** in the isoform of an enzyme expressed in **liver** causes the following **symptoms**:

- After eating a CHO meal, elevated blood levels of glucose, lactate, & lipids.
- **During fasting**, **low blood glucose** & high ketone bodies.

Which liver enzyme is defective? Glycogen Synthase

Explain Symptoms:

- After eating, blood glucose is high because liver cannot store it as glycogen. Some excess glucose is processed via Glycolysis to produce lactate & fatty acid precursors.
- During fasting, glucose is low because the liver lacks glycogen stores for generation of glucose.
 Ketone bodies are produced as an alternative fuel.

Question: How would you nutritionally treat deficiency of liver Glycogen Synthase?

- Frequent meals of complex carbohydrates

 (avoiding simple sugars that would lead to a rapid
 rise in blood glucose)
- Meals high in protein to provide substrates for gluconeogenesis.

Glycogen Storage

Diseases are genetic enzyme deficiencies associated with **excessive glycogen accumulation** within cells.

Some enzymes whose deficiency leads to glycogen accumulation are part of the interconnected pathways shown here.

glycogen glucose-1-P Glucose-6-Phosphatase glucose-6-P \longrightarrow glucose + P_i fructose-6-P Phosphofructokinase fructose-1,6-bisP Glycolysis continued

Symptoms in addition to excess glycogen storage:

- When a genetic defect affects mainly an isoform of an enzyme expressed in liver, a common symptom is hypoglycemia, relating to impaired mobilization of glucose for release to the blood during fasting.
- When the defect is in muscle tissue, weakness & difficulty with exercise result from inability to increase glucose entry into Glycolysis during exercise.
- Additional symptoms depend on the particular enzyme that is deficient.

Glycogen Storage Disease	Symptoms , in addition to glycogen accumulation
Type I , liver deficiency of Glucose-6-phosphatase (von Gierke's disease)	hypoglycemia (low blood glucose) when fasting, liver enlargement.
Type IV , deficiency of branching enzyme in various organs, including liver (Andersen's disease)	liver dysfunction and early death.
Type V , muscle deficiency of Glycogen Phosphorylase (McArdle's disease)	muscle cramps with exercise.
Type VII , muscle deficiency of Phosphofructokinase .	inability to exercise.